どっちがでかい?失敗作 - 質問解決D.B.(データベース)

どっちがでかい?失敗作

問題文全文(内容文):
$ 3^{62}$ vs $7^{42}$
どちらが大きいか?
単元: #数Ⅱ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 3^{62}$ vs $7^{42}$
どちらが大きいか?
投稿日:2022.05.02

<関連動画>

福田の一夜漬け数学〜図形と方程式〜円の方程式(8)外から引いた接線(原点中心の円の場合)、高校2年生

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#図形と方程式#解と判別式・解と係数の関係#点と直線#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 円$x^2+y^2=5$ の接線で、点(3,1)を通るものを求めよ。
また、接点の座標を求めよ。
この動画を見る 

福田のわかった数学〜高校2年生053〜領域(8)領域と最大最小(4)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#円と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 領域(8) 領域と最大最小(4)
$2x+3y \geqq 9, 4x+y \leqq18, y \leqq 2$のとき、
$x^2+y^2$
の最大値、最小値を求めよ。
この動画を見る 

【数Ⅱ】三角関数:方程式6x²-xy-y²=0は交わる2直線を表す。このとき、2直線のなす角θ(0≦θ≦π/2)を求めよ。

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
方程式$6x^2-xy-y^2=0$は交わる2直線を表す。このとき、2直線のなす角$\theta(0\leqq\theta\leqq \dfrac{\pi}{2}$)を求めよ。
この動画を見る 

【丁寧に解説】テストによく出る繁分数式(分数の中に分数)を解説!

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式を簡単にせよ。
(1)
$\displaystyle \frac{x-2-\displaystyle \frac{2}{x-1}}{x+2+\displaystyle \frac{2}{x-1}}$


(2)
$1-\displaystyle \frac{1}{1-\displaystyle \frac{1}{1-x}}$
この動画を見る 

福田の数学〜筑波大学2023年理系第6問〜複素数平面上の点の軌跡とアポロニウスの円

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ $i$を虚数単位とする。複素数平面に関する以下の問いに答えよ。
(1)等式|$z$+2|=2|$z$-1| を満たす点$z$の全体が表す図形は円であることを示し、その中心と半径を求めよ。
(2)等式
$\left\{|z+2|-2|z-1|\right\}$$|z+6i|$=$3\left\{|z+2|-2|z-1|\right\}$$|z-2i|$
を満たす点$z$の全体が表す図形をSとする。このときSを複素数平面上に図示せよ。
(3)点$z$が(2)における図形S上を動くとき、$w$=$\frac{1}{z}$ で定義される点$w$が描く図形を複素数平面上に図示せよ。

2023筑波大学理系過去問
この動画を見る 
PAGE TOP