【中学からの!】三角比の計算(1):特別講義(トッコー)~全国入試問題解法 - 質問解決D.B.(データベース)

【中学からの!】三角比の計算(1):特別講義(トッコー)~全国入試問題解法

問題文全文(内容文):
$\sin\theta+\cos\theta=\dfrac{1}{2}$のとき,$\sin\theta\cos\theta$の値を求めよ.

単元: #数学(中学生)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\sin\theta+\cos\theta=\dfrac{1}{2}$のとき,$\sin\theta\cos\theta$の値を求めよ.

投稿日:2022.07.09

<関連動画>

【高校数学】  数Ⅰ-84  三角比⑨

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$0° \leqq \theta \leqq 180°$とする。次の不等式を満たす
$\theta $の範囲を求めよう。

①$\sin \theta \gt \displaystyle \frac{\sqrt{ 3 }}{2}$

②$\cos \theta \lt \displaystyle \frac{1}{2}$

③$\tan \theta \geqq \sqrt{ 3 }$

④$2\sin \theta-1\leqq0$

⑤$2\cos \theta+ \sqrt{ 3 } \gt 0$

⑥$\tan \theta +1 \geqq 0$

この動画を見る 

【短時間でマスター!!】正弦定理・余弦定理を解説!〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
正弦定理・余弦定理を解説します。
この動画を見る 

sinとcosの関係

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
sinとcosの関係
*図は動画内参照
この動画を見る 

2023高校入試解説32問目 3辺の長さがわかれば面積求まる 桃山学院

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
△ABC=?
*図は動画内参照

2023桃山学院高等学校
この動画を見る 

数学「大学入試良問集」【6−6 外接球と四面体】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#内心・外心・重心とチェバ・メネラウス#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$AB=5,BC=7,CA=8$および$OA=OB=OC=t$を満たす四面体$OABC$がある。
(1)$\angle BAC$を求めよ。
(2)$\triangle ABC$の外接円の半径を求めよ。
(3)4つの頂点$O,A,B,C$が同一球面上にあるとき、その球の半径が最小となるような実数$t$の値を求めよ。
この動画を見る 
PAGE TOP