【数学Ⅲ/微分】逆関数の微分 - 質問解決D.B.(データベース)

【数学Ⅲ/微分】逆関数の微分

問題文全文(内容文):
逆関数の微分法の公式を用いて、次の関数を微分せよ。

$y=x^{\frac{1}{5}}$
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
逆関数の微分法の公式を用いて、次の関数を微分せよ。

$y=x^{\frac{1}{5}}$
投稿日:2021.08.05

<関連動画>

【数Ⅲ】極限:岐阜大の類題! 複素数z[n]をz[1]=1,z[n+1]=i/2(z[n]+1)(n=1,2,3,···)により定める。z[n]の実部x[n],虚部y[n]を求めよ。

単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数$z_1$を$z_1=1$,$z_{n+1}=\dfrac{1}{2}(z_n+1)(n=1,2,3,···)$により定める。$z_n$の実部$x_n$,虚部$y_n$を求めよ。


この動画を見る 

福田の数学〜東京医科歯科大学2023年医学部第2問PART2〜場合分けされた連立漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ xyz空間において、3点(0,0,0),(1,0,0),(0,1,0)を通る平面$\pi_1$と3点(1,0,0),(0,1,0),(0,0,1)を通る平面$\pi_2$を考える。$x_0$=1, $y_0$=2, $z_0$=-2として、点P${}_0$($x_0$,$y_0$,$z_0$)から始めて、次の手順でP${}_1$($x_1$,$y_1$,$z_1$), P${}_2$($x_2$,$y_2$,$z_2$),... を決める。
・$k$が偶数のとき、$\pi_1$上の点で点P${}_k$($x_k$,$y_k$,$z_k$)からの距離が最小となるものをP${}_{k+1}$($x_{k+1}$,$y_{k+1}$,$z_{k+1}$)とする。
・$k$が奇数のとき、$\pi_2$上の点で点P${}_k$($x_k$,$y_k$,$z_k$)からの距離が最小となるものをP${}_{k+1}$($x_{k+1}$,$y_{k+1}$,$z_{k+1}$)とする。
このとき、次の問いに答えよ。
(1)$\pi_2$に直交するベクトルのうち、長さが1で$x$成分が正のもの$n_2$を求めよ。
(2)$x_{k+1}$,$y_{k+1}$,$z_{k+1}$をそれぞれ$x_k$,$y_k$,$z_k$を用いて表せ。
(3)$\displaystyle\lim_{k\to\infty}x_k$, $\displaystyle\lim_{k\to\infty}y_k$, $\displaystyle\lim_{k\to\infty}z_k$を求めよ。
この動画を見る 

【高校数学】数Ⅲ-56 無理不等式とグラフ

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の不等式を解け。

①$\sqrt{x-1} \gt x-3$

②$\sqrt{-2x+7} \leqq -x+2$
この動画を見る 

【数Ⅲ】【関数と極限】数列{(x/x²+2p)^n}がすべての実数xに対して収束するとき、pの値の範囲を求めよ。ただし、p>0とする。

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列{$\dfrac{x}{x²+2p}^n$}が
すべての実数xに対して収束するとき、pの値の範囲を求めよ。
ただし、p>0とする。
この動画を見る 

【数Ⅲ】【関数と極限】次の条件によって定められる数列{an}の一般項を求めよ。また、{an}の極限を求めよ。a₁=1/2、an+₁=an/2+an

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる
数列$a_n$の一般項を求めよ。
また、$a_n$の極限を求めよ。

$a_1=\dfrac{1}{2}$、$a_{n+1}=\dfrac{a_n}{2+a_n}$
この動画を見る 
PAGE TOP