問題文全文(内容文):
$\Large\boxed{1}$ (1)$f(x)$=$x^4$とする。$f(x)$の$x$=$a$における微分係数を、定義に従って求めなさい。
次の関数に関しても$x$=$a$における微分係数を、定義に従って求めなさい。
$g(x)$=$\sin x$
$h(x)$=$\log x$
$\Large\boxed{1}$ (1)$f(x)$=$x^4$とする。$f(x)$の$x$=$a$における微分係数を、定義に従って求めなさい。
次の関数に関しても$x$=$a$における微分係数を、定義に従って求めなさい。
$g(x)$=$\sin x$
$h(x)$=$\log x$
単元:
#大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)$f(x)$=$x^4$とする。$f(x)$の$x$=$a$における微分係数を、定義に従って求めなさい。
次の関数に関しても$x$=$a$における微分係数を、定義に従って求めなさい。
$g(x)$=$\sin x$
$h(x)$=$\log x$
$\Large\boxed{1}$ (1)$f(x)$=$x^4$とする。$f(x)$の$x$=$a$における微分係数を、定義に従って求めなさい。
次の関数に関しても$x$=$a$における微分係数を、定義に従って求めなさい。
$g(x)$=$\sin x$
$h(x)$=$\log x$
投稿日:2023.08.22