帯分数と文字式 - 質問解決D.B.(データベース)

帯分数と文字式

問題文全文(内容文):
$2+\frac{1}{3}=$
$a+\frac{b}{3}=$
単元: #数学(中学生)#中1数学#文字と式
指導講師: 数学を数楽に
問題文全文(内容文):
$2+\frac{1}{3}=$
$a+\frac{b}{3}=$
投稿日:2023.06.04

<関連動画>

【中学数学】1次関数:関数決定マスターへの道 一気見用 まとめて見ると、理解も繋がる深まる

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#比例・反比例#1次関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)xはyに比例し、x=3のときy=9となる。yをxの式で表しなさい。
(2)xはyに反比例し、x=3のときy=9となる。yをxの式で表しなさい。
(3)次の条件を満たす1次関数を求めよ。 傾きが2で、x=5のときy=7
(4)次の条件を満たす1次関数を求めよ。 変化の割合が-1で、x=5のときy=7
(5)次の条件を満たす1次関数を求めよ。 切片が3で、x=5のときy=7
(6)次の条件を満たす1次関数を求めよ。 直線y=3xに平行、x=5のときy=7
(7)次の条件を満たす1次関数を求めよ。 直線y=3x+3に平行、x=5のときy=7
(8)次の条件を満たす1次関数を求めよ。 x=3のときy=3、x=5のときy=7
(9)次の条件を満たす1次関数を求めよ。 x=3のときy=3、x=5のときy=7
(10)次の条件を満たす1次関数を求めよ。 直線y=2x-4に平行で、直線y=-2x+4とy軸上で交わる
(11)次の条件を満たす1次関数を求めよ。 直線y=2x+1とy軸上で交わり、直線y=-3x-6とx軸上で交わる
(12)xの変域が-2≦x≦4のとき、yの変域が-9≦y≦3なる1次関数を求めよ。
この動画を見る 

見た目に騙されるな 早稲田本庄  2022 入試問題解説40問目

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形#立体図形#体積・表面積・回転体・水量・変化のグラフ#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
四角形AIGJの面積=?
(4点A,I,G,Jは同一平面)
*図は動画内参照

2022早稲田大学 本庄高等学院
この動画を見る 

消費税廃止したら全商品は10%OFFになりますか?

アイキャッチ画像
単元: #数学(中学生)#中1数学#方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
消費税廃止したら全商品は10%OFFになるか。以下の方程式を利用して考える。
$x×(1+\displaystyle \frac{10}{100})=1000$
この動画を見る 

【中1 数学】中1-22 文字式と数の乗法・除法②

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
分数の___から落ちたら、
必ず①___をつけよう!
【レベル3】
②$5(x-2)-2(3x-1)=$
③$-2(3a+1)-(a-5)=$
④$-\displaystyle \frac{1}{2}(4)(+6)-\displaystyle \frac{2}{3}(-3)(-9)=$
【レベル4】
⑤$\displaystyle \frac{2x-5}{3} \times (-6)=$
⑥$12 \times \displaystyle \frac{-x+3}{2}=$
⑦$\displaystyle \frac{2x+3}{8} \times 20=$
この動画を見る 

【高校受験対策/数学】死守65

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(展開、因数分解)#2次方程式#比例・反比例#平行と合同#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守65

①右の図のように、直線$l$、直線$m$と2つの直線が交わっている。
$\angle a,\angle b,\angle c,\angle d,\angle e$のうち、どの角とどの角が等しければ、直線$l$と直線$m$が平行であるといえるか、その2つの角を答えなさい。

②$x^2-10x+25$を因数分解しなさい。

③2次方程式$(2x-5)^2=18$を解きなさい。

④右のア~オのうち、絶対値が最も大きい数を選び、記号で答えなさい。
ア $3.2$
イ $-\frac{7}{2}$
ウ $2\sqrt{2}$
エ $\frac{10}{3}$
オ $-3$

⑤右のア~オのうち、$y$が$x$に比例するものをすべて選び、記号で答えなさい。

ア 自然数$x$の約数の個数は$y$ 個である。
イ $x$ 円の商品を1000円支払って買うとき、おつりは$y$ 円である。
ウ 1200mの道のりを分速$x$ mの速さで進むとき、かかる時間は$y$ 分である。
エ 15%の食塩水が$x$ gあるとき、この食塩水に含まれる食塩の量は$y$ gである。
オ 何も入っていない容器に水を毎分2Lずつ$x$ 分間入れるとき、たまる水の量は$y$ Lである。

⑥右のア~オのうち、関数$y=2x^2$ついて述べた文として正しいものをすべて選び、記号で答えなさい。

ア この関数のグラフは、原点を通る。
イ $x \gt 0$のとき、$x$が増加すると$y$は減少する。
ウ この関数のグラフは$x$ 軸について対称である。
エ $x$の変域が$-1 \leqq x \leqq 2$のとき、$y$の変域は$0 \leqq y \leqq 8$である。
オ $x$の値がどの値からどの値まで増加するかに関わらず、変化の割合は常に2である。
この動画を見る 
PAGE TOP