【高校数学】漸化式~基本を丁寧に~ 3-14【数学B】 - 質問解決D.B.(データベース)

【高校数学】漸化式~基本を丁寧に~ 3-14【数学B】

問題文全文(内容文):
漸化式:数列において、その前の項から次の項をただ1通りに定める規則を示す等式
数列{an}が次の2つの条件を満たしているとする。第3項を求めよ。
a1=1, an+1=an+n

次のように定義される数列{an}の初項から第5項までを書け。

単元: #数列#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
漸化式:数列において、その前の項から次の項をただ1通りに定める規則を示す等式
数列{an}が次の2つの条件を満たしているとする。第3項を求めよ。
a1=1, an+1=an+n

次のように定義される数列{an}の初項から第5項までを書け。

投稿日:2025.07.31

<関連動画>

東大 2次方程式 解と係数 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-4x-1=0$の2つの解を$\alpha, \beta(a \gt \beta),S_{n}=\alpha ^n+\beta ^n$

(1)
$S_{1},S_{2},S_{3}$を求めよ。
$S_{n}$を$S_{n-1}$と$S_{n-2}$で表せ

(2)
$\beta^3$以下の最大の整数を求めよ

(3)
$a^{2003}$以下の最大の整数の1の位の数を求めよ

出典:2003年東京大学 過去問
この動画を見る 

福田のおもしろ数学309〜自然数から自然数への関数f(n)に関する関数方程式

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数列#数学的帰納法#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$$自然数を自然数へ写す関数f(n)が次を満たす。$$
$$\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Rightarrow \frac{1}{f(a)}+\frac{1}{f(b)}=\frac{1}{f(c)}$$
$$このような関数f(n)をすべて求めて下さい。$$
この動画を見る 

shape problems : Shirotan's cute kawaii math show #Math #exam #questions #brainteasers #study

単元: #数列#数学(高校生)#数B
指導講師:
問題文全文(内容文):
$\angle{AOB} の大きさを求めなさい$
$点O:円の中心\\ 3点A,B,C:円周上の点$
この動画を見る 

福田のおもしろ数学311〜n個の積の和を最大にする方法

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$n$個の実数 $a_1\leqq a_2\leqq \cdots \leqq a_n$と$n$個の実数を適当に並べたものを$b_1, b_2, \cdots ,b_n $ として、$s = a_1b_1+a_2b_2+\cdots + a_nb_n $を最大にするには$b_1 \leqq b_2 \leqq \cdots \leqq b_n $となるように並べたときである。これを証明して下さい。(ただし、$n\geqq 2$とする)
この動画を見る 

福田の数学〜神戸大学2024年理系第1問〜無理関数を利用して定義された数列の一般項

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#神戸大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ $c$を正の実数とする。各項が正である数列$\left\{a_n\right\}$を次のように定める。$a_1$は関数
$y$=$x$+$\sqrt{c-x^2}$ (0≦$x$≦$\sqrt c$)
が最大値をとるときの$x$の値とする。$a_{n+1}$は関数
$y$=$x$+$\sqrt{a_n-x^2}$ (0≦$x$≦$\sqrt{a_n}$)
が最大値をとるときの$x$の値とする。数列$\left\{b_n\right\}$を$b_n$=$\log_2a_n$ で定める。以下の問いに答えよ。
(1)$a_1$を$c$を用いて表せ。
(2)$b_{n+1}$を$b_n$を用いて表せ。
(3)数列$\left\{b_n\right\}$の一般項を$n$と$c$を用いて表せ。
この動画を見る 
PAGE TOP