【数Ⅱ】【複素数と方程式】2次方程式の解と判別式2 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【複素数と方程式】2次方程式の解と判別式2 ※問題文は概要欄

問題文全文(内容文):
2つの2次方程式x²+mx+m=0, x²+mx+1=0がともに虚数解をもつとき、定数mの値の範囲を定めよ。

2つの2次方程式x²+2mx-2m=0, x²+(m-1)x+m²=0が次の条件を満たすとき、定数mの値の範囲を定めよ。
(1)少なくとも一方が実数解をもつ
(2)一方だけが実数解をもつ
チャプター:

0:00 オープニング
0:04 1問目の解説
1:41 2問目(1)の解説
4:14 2問目(2)の解説

単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
2つの2次方程式x²+mx+m=0, x²+mx+1=0がともに虚数解をもつとき、定数mの値の範囲を定めよ。

2つの2次方程式x²+2mx-2m=0, x²+(m-1)x+m²=0が次の条件を満たすとき、定数mの値の範囲を定めよ。
(1)少なくとも一方が実数解をもつ
(2)一方だけが実数解をもつ
投稿日:2025.01.26

<関連動画>

自治医大 三次方程式の解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#図形への応用#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023自治医科大学過去問題
kは実数
$x^3-6x^2+kx-7 = 0$
の3つの解は複素数平面で1辺の長さが$\sqrt{3}$の正三角形の頂点となる
kの値
この動画を見る 

関西学院大 微分 3次関数の最大値 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'03関西学院大学
0<k<1
$f(x)=x(x-3k)^2$の$0 \leqq x \leqq 1$における最大値。
また最大値が$\frac{1}{2}$のときkの値
この動画を見る 

2021同志社大 4次方程式4つの虚数解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$c$は実数であり,定数である.
$x^4+cx^3+cx^2+cx+1=0$の$4$つの解がすべて虚数となる.$c$の必要十分条件である.
$4$つの虚数解が複素平面上で正方形になる$c$の値を求めよ.

2021同志社過去問
この動画を見る 

筑波大 4次方程式

単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2006年 国立大学法人筑波大学 過去問

$f(x)=x^4+2x^2-4x+8$
$(x^2+t)^2-f(x)=(px+q)^2$
を満たす整数$p,q,t$
$f(x)=0$を解け

この動画を見る 

連立二元二次方程式2023

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2=2023+y$
$y^2=2023+x$

このときxyの値を求めよ.
この動画を見る 
PAGE TOP