大学入試問題#523「落とせない積分」 信州大学(2001) #定積分 - 質問解決D.B.(データベース)

大学入試問題#523「落とせない積分」 信州大学(2001) #定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{x^2+2}{x+2} dx$

出典:2001年信州大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{x^2+2}{x+2} dx$

出典:2001年信州大学 入試問題
投稿日:2023.05.02

<関連動画>

#前橋工科大学2021#定積分_14#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{13} \displaystyle \frac{dx}{\sqrt[ 3 ]{ (2x+1)^5 }}$

出典:2021年前橋工科大学
この動画を見る 

#宮崎大学(2016)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e} \displaystyle \frac{\sqrt{ 1+log\ x }}{x} dx$

出典:2016年宮崎大学
この動画を見る 

#筑波大学(2018) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\sqrt{ 3 }}^{\sqrt{ 3 }} \displaystyle \frac{1}{x^2+3} dx$

出典:2018年筑波大学
この動画を見る 

福田のおもしろ数学300〜絶対値の付いた式の定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$
\displaystyle \int_{0}^{ \pi } |a \sin \ nx + b \cos nx| dx

\quad
$

(nは自然数)を求めよ
この動画を見る 

福田のおもしろ数学454〜積分に関するシュワルツの不等式の証明と等号成立条件

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#積分とその応用#不定積分#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$p\leqq x \leqq q$で定義された連続関数$f(x),g(x)$に対して

$\left(\displaystyle \int_{p}^{q} f(x)^2 dx\right)\left(\displaystyle \int_{p}^{q}g(x)^2 dx \right) \geqq \left(\displaystyle \int_{p}^{q} f(x)g(x)dx\right)^2$

を証明して下さい。

また等号成立条件も調べて下さい。
   
この動画を見る 
PAGE TOP