数列の和 - 質問解決D.B.(データベース)

数列の和

問題文全文(内容文):
$\displaystyle \sum_{n=1}^\infty \displaystyle \frac{n}{(n+1)!}$
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \sum_{n=1}^\infty \displaystyle \frac{n}{(n+1)!}$
投稿日:2019.12.16

<関連動画>

福田のおもしろ数学047〜これができたら天才〜ガウス記号のついた数の和

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\left[\dfrac{13×1}{2024}\right]+\left[\dfrac{13×2}{2024}\right]+\left[\dfrac{13×3}{2024}\right]+・・・+\left[\dfrac{13×2023}{2024}\right]$を計算してください。
ただし、$[x]$は$x$を超えない最大の整数を表します。
この動画を見る 

群数列 近江高校(改)

アイキャッチ画像
単元: #数学(中学生)#数列#数列とその和(等差・等比・階差・Σ)#高校入試過去問(数学)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
群数列
$\frac{1}{2} \quad \frac{2}{3} \quad \frac{1}{3} \quad \frac{3}{4} \quad \frac{2}{4} \quad \frac{1}{4} \quad \frac{4}{5} \quad \frac{3}{5} $
$① \quad ② \quad ③ \quad ④ \quad ⑤ \quad ⑥ \quad ⑦ \quad ⑧ $

近江高等学校(改)
この動画を見る 

福田のわかった数学〜高校3年生理系076〜平均値の定理(4)数列の極限の問題

アイキャッチ画像
単元: #数列#漸化式#関数と極限#微分とその応用#数列の極限#接線と法線・平均値の定理#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$平均値の定理(4)
微分可能な関数$f(x)$が$f(1)=1, 0 \lt f'(x) \leqq \frac{1}{2}$を満たしている。
$a_{n+1}=f(a_n)$で定義される数列$\left\{a_n\right\}$について、
$\lim_{n \to \infty}a_n=1$であることを示せ。
この動画を見る 

福田の数学〜千葉大学2022年理系第7問〜不定方程式の自然数解と漸化式で与えられた数列

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$x,y$についての方程式
$x^2-6xy+y^2=9  \ldots\ldots(*)$
に関する次の問いに答えよ。
(1)$x,y$がともに正の整数であるような(*)の解のうち、yが最小であるものを
求めよ。
(2)数列$a_1,a_2,a_3,\ldots$が漸化式
$a_{n+2}-6a_{n+1}+a_n=0  (n=1,2,3,\ldots)$
を満たすとする。このとき、$(x,y)=(a_{n+1},a_n)$が(*)を満たすならば、
$(x,y)=(a_{n+2},a_{n+1})$も(*)を満たすことを示せ。
(3)(*)の整数解(x,y)は無数に存在することを示せ。

2022千葉大学理系過去問
この動画を見る 

信州大 漸化式 ちょいと一工夫 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
'93信州大学過去問題
$a_1=\frac{1}{2}$ $a_{n+1}=a_n(2-a_n)$
一般項を求めよ。n自然数
この動画を見る 
PAGE TOP