問題文全文(内容文):
$f(x)=\frac{9^x}{9^x+3}$とするとき
$f(\frac1{2024})+f(\frac2{2024})+f(\frac3{2024})+\cdots+f(\frac{2023}{2024})$
の値を求めよ
$f(x)=\frac{9^x}{9^x+3}$とするとき
$f(\frac1{2024})+f(\frac2{2024})+f(\frac3{2024})+\cdots+f(\frac{2023}{2024})$
の値を求めよ
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=\frac{9^x}{9^x+3}$とするとき
$f(\frac1{2024})+f(\frac2{2024})+f(\frac3{2024})+\cdots+f(\frac{2023}{2024})$
の値を求めよ
$f(x)=\frac{9^x}{9^x+3}$とするとき
$f(\frac1{2024})+f(\frac2{2024})+f(\frac3{2024})+\cdots+f(\frac{2023}{2024})$
の値を求めよ
投稿日:2024.02.19