【高校数学】数Ⅲ-32 2次曲線の平行移動① - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-32 2次曲線の平行移動①

問題文全文(内容文):
次の2次曲線を$x$軸方向に3,$y$軸方向に-2だけ平行移動した曲線の
方程式と焦点を求めよ.また,③は漸近線も求めよ.

①楕円$\dfrac{x^2}{9} +\dfrac{y^2}{5} =1$

②放物線$y^2=-2x$

③双曲線$\dfrac{x^2}{16}-\dfrac{y^2}{9}=1$
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の2次曲線を$x$軸方向に3,$y$軸方向に-2だけ平行移動した曲線の
方程式と焦点を求めよ.また,③は漸近線も求めよ.

①楕円$\dfrac{x^2}{9} +\dfrac{y^2}{5} =1$

②放物線$y^2=-2x$

③双曲線$\dfrac{x^2}{16}-\dfrac{y^2}{9}=1$
投稿日:2017.05.17

<関連動画>

15岡山県教員採用試験(数学:6番 サイクロイドの長さ)

アイキャッチ画像
単元: #平面上の曲線#2次曲線#その他#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$
曲線$c$ $\begin{eqnarray}
\left\{
\begin{array}{l}
x=r(\theta-\sin\theta) \\
y-r(1-\cos\theta)
\end{array}
\right.
\end{eqnarray}$
の長さ$\ell$を求めよ.

$r\gt 0,0\leqq \theta 2\pi$とする.
この動画を見る 

【高校数学】数Ⅲ-35 2次曲線と直線①

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①双曲線$x^2-3y^2=3$と直線$y=x+k$の共有点の個数は,
定数$k$の値によってどのように変わるか.
この動画を見る 

【数C】【平面上の曲線】次のような楕円の方程式を求めよ。ただし、中心は原点で、長軸はx軸上、短軸はy軸上にあるものとする。 (1) 長軸の長さが6,短軸の長さが4 (2) 2つの焦点間の距離が6,長軸の長さが10 (3) 2点(2,2√5/3), (-3√3/2,1)を通る

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のような楕円の方程式を求めよ。
ただし、中心は原点で、長軸は $x$ 軸上、
短軸は $y$ 軸上にあるものとする。
(1) 長軸の長さが $6$ 、短軸の長さが $4$
(2) $2$ つの焦点間の距離が $6$, 長軸の長さが $10$
(3) $2$ 点 $\displaystyle (2,\ \frac{2\sqrt{5}}{3}),\ (-\frac{3\sqrt{3}}{2},\ 1)$を通る
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第6問〜楕円を軸以外の直線で回転させた立体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#積分とその応用#2次曲線#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{6}}$直線$x+y=1$に接する楕円$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a \gt 0,\ b \gt 0)$がある。
このとき、$b^2=\boxed{\ \ ア\ \ }\ a^2+\boxed{\ \ イ\ \ }$である。
この楕円を直線$y=b$のまわりに1回転してできる立体の体積は、
$a=\frac{\sqrt{\boxed{\ \ ウ\ \ }}}{\boxed{\ \ エ\ \ }}$のとき、
最大値$\frac{\boxed{\ \ オ\ \ }\sqrt{\boxed{\ \ カ\ \ }}}{\boxed{\ \ キ\ \ }}\pi^2$をとる。

2022早稲田大学人間科学部過去問
この動画を見る 

【数C】【平面上の曲線】直角双曲線x²-y²=a² (a>0)上の点Pから、2つの漸近線に垂線PQ,PRを下ろす。このとき、PQ・PRは一定であることを証明せよ

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):
直角双曲線 $x^2+y^2=a^2 \ (a \gt 0)$ 上の点$\mathrm{P}$ から、
$2$ つの漸近線に垂線$\mathrm{PQ,PR}$ を下ろす。
このとき、 $\mathrm{PQ \cdot PR}$ は一定であることを証明せよ。
この動画を見る 
PAGE TOP