すっきり、あっさり - 質問解決D.B.(データベース)

すっきり、あっさり

問題文全文(内容文):
$ z=1+\sqrt[5]{2}+\sqrt[5]{4}+\sqrt[5]{8}+\sqrt[5]{16}$である.
$ \left(1+\dfrac{1}{z}\right)^{50}$の値を求めよ.
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ z=1+\sqrt[5]{2}+\sqrt[5]{4}+\sqrt[5]{8}+\sqrt[5]{16}$である.
$ \left(1+\dfrac{1}{z}\right)^{50}$の値を求めよ.
投稿日:2022.04.09

<関連動画>

【数Ⅰ】数と式:次式の分母を有理化して簡単にしよう。1/(1+√2+√3)

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次式の分母を有理化して簡単にしよう。$\dfrac{1}{1+\sqrt2+\sqrt3)}$
この動画を見る 

福田のおもしろ数学133〜命題の否定〜夏は暑い

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
命題「夏は暑い」を否定せよ。
この動画を見る 

#49 数検1級1次 過去問 根号を外す

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#数と式#2次関数#複素数と方程式#式の計算(整式・展開・因数分解)#2次方程式と2次不等式#2次関数とグラフ#解と判別式・解と係数の関係#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\sqrt[ 3 ]{ -5+2\sqrt{ 13 } }\ $の二重根号をはずせ
この動画を見る 

福田の数学〜早稲田大学2022年教育学部第3問〜円の外接円の半径と円周上の点と原点の距離の最大最小

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#点と直線#円と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{3}}\ O(0,0),\ A(0,1),\ B(p,q)$を座標平面上の点とし、pは0でないとする。
AとBを通る直線をlとおく。Oを中心としlに接する円の面積を$D_1$で表す。
また、3点O,A,Bを通る円周で囲まれる円の面積を$D_2$とおく。次の問いに答えよ。
(1)$D_1$を$p,q$を使って表せ。
(2)点$(2,2\sqrt3)$を中心とする半径1の円周をCとする。点BがC上を動くときの
$D_1$と$D_2$の積$D_1D_2$の最小値と最大値を求めよ。

2022早稲田大学教育学部過去問
この動画を見る 

お茶の水女子大 微分積分 絶対値のついた2次関数 面積

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$f(x)=|x^2-4x+3|$
$g(x)=ax(a \gt 0)$
$f(x)$と$g(x)$が4つの共有点をもつ$a$の範囲

(2)
次の不等式の表す領域の面積
$\begin{eqnarray}
\left\{
\begin{array}{l}
y \geqq |x^2-4x+3 \\
y \leqq x
\end{array}
\right.
\end{eqnarray}$

出典:2009年お茶の水女子大学 過去問
この動画を見る 
PAGE TOP