【数C】【平面上の曲線】辺が座標軸に平行な長方形が、楕円x²/16+y²/12=1に内接している。この長方形の周の長さが20であるとき、長方形の2辺の長さを求めよ。 - 質問解決D.B.(データベース)

【数C】【平面上の曲線】辺が座標軸に平行な長方形が、楕円x²/16+y²/12=1に内接している。この長方形の周の長さが20であるとき、長方形の2辺の長さを求めよ。

問題文全文(内容文):
辺が座標軸に平行な長方形が、
楕円 $\displaystyle \frac{x^2}{16}+\frac{y^2}{12}=1$ に内接している。
この長方形の周の長さが $20$ であるとき、
長方形の $2$ 辺の長さを求めよ。
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説
指導講師: 理数個別チャンネル
問題文全文(内容文):
辺が座標軸に平行な長方形が、
楕円 $\displaystyle \frac{x^2}{16}+\frac{y^2}{12}=1$ に内接している。
この長方形の周の長さが $20$ であるとき、
長方形の $2$ 辺の長さを求めよ。
投稿日:2025.05.27

<関連動画>

福田の数学〜慶應義塾大学2021年医学部第3問〜見上げる角が等しい点の軌跡と2次曲線

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#軌跡と領域#2次曲線#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$
水平な平面上の異なる2点${\rm A(0,1),Q}(x,y)$にそれぞれ高さ$h \gt 0,g \gt 0$の塔が平面に垂直に立っている。この平面上にあって$\rm A,Q$とは異なる点$\rm P$から2つの塔の先端を見上げる角度が等しくなる状況を考える。ただし、$h \neq g$とする。
(1)点$\rm Q$の座標が$ (t,1)$ (ただし$t \gt 0$)のとき、2つの塔を見上げる角度が等しくなるような点$\rm P$は、中心の座標が($\boxed{\ \ (あ)\ \ },\boxed{\ \ (い)\ \ }$)、半径が$\boxed{\ \ (う)\ \ }$の円周上にある。
(2)2つの塔を見上げる角度が等しくなるような点$\rm P$のうち、$y$軸上にあるものがただ1つあるとする。このとき$h$と$g$の間には不等式$\boxed{\ \ (え)\ \ }$が成り立ち、点$\textrm{Q}(x,y)$は2直線$y=\boxed{\ \ (お)\ \ }$, $y=\boxed{\ \ (か)\ \ }$のいずれかの上にある。
(3)2つの塔を見上げる角度が等しくなるような点$\rm P$のうち、$x$軸上にあるものがただ1つであるとする。このとき点$\textrm{Q}(x,y)$は方程式
$\boxed{\ \ (き)\ \ }x^2+\boxed{\ \ (く)\ \ }x+$$\boxed{\ \ (け)\ \ }y^2+$$\boxed{\ \ (こ)\ \ }y=1$
で表される2次曲線$C$の上にある。$C$が楕円であるのは$h$と$g$の間に不等式$\boxed{\ \ (さ)\ \ }$が成り立つときであり、そのとき$C$の2つの焦点の座標は$(\boxed{\ \ (し)\ \ },\boxed{\ \ (す)\ \ })$,$(\boxed{\ \ (せ)\ \ },\boxed{\ \ (そ)\ \ })$である。$\boxed{\ \ (さ)\ \ }$が成り立たないとき$C$は双曲線となり、その2つの焦点の座標は$(\boxed{\ \ (た)\ \ },\boxed{\ \ (ち)\ \ })$,$(\boxed{\ \ (つ)\ \ },\boxed{\ \ (て)\ \ })$である。さらに$\dfrac{h}{g}=\boxed{\ \ (と)\ \ }$のとき$C$は直角双曲線となる。

2021慶應義塾大学医学部過去問
この動画を見る 

【数学Ⅲ】二次曲線(式と曲線)~まとめ・イメージ・公式の意味~

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学Ⅲ】二次曲線(式と曲線)まとめ動画です
-----------------
$y^2=8x$のグラフ $y^2=3x$のグラフを描け
この動画を見る 

【数C】【平面上の曲線】2次曲線2 ※問題文は概要欄

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たす点 $\mathrm{P}$ の軌跡を求めよ。
(1) 直線 $x=-2$に接し、点 $(2,0)$を通る円の中心 $\mathrm{P}$
(2) 円 $ x^2 + (y+2)^2 = 1$ と直線 $y=1$の両方に接する円の中心 $\mathrm{P}$
この動画を見る 

【数C】【平面上の曲線】次のような楕円の方程式を求めよ。ただし、中心は原点で、長軸はx軸上、短軸はy軸上にあるものとする。 (1) 長軸の長さが6,短軸の長さが4 (2) 2つの焦点間の距離が6,長軸の長さが10 (3) 2点(2,2√5/3), (-3√3/2,1)を通る

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のような楕円の方程式を求めよ。
ただし、中心は原点で、長軸は $x$ 軸上、
短軸は $y$ 軸上にあるものとする。
(1) 長軸の長さが $6$ 、短軸の長さが $4$
(2) $2$ つの焦点間の距離が $6$, 長軸の長さが $10$
(3) $2$ 点 $\displaystyle (2,\ \frac{2\sqrt{5}}{3}),\ (-\frac{3\sqrt{3}}{2},\ 1)$を通る
この動画を見る 

福田の数学〜神戸大学2022年理系第4問〜双曲線が直線から切り取る弦の中点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#点と直線#軌跡と領域#2次曲線#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
aを正の実数とし、双曲線$\frac{x^2}{4}-\frac{y^2}{4}=1$と直線$y=\sqrt ax+\sqrt a$が異なる2点P,Q
で交わっているとする。線分PQの中点をR(s,t)とする。以下の問いに答えよ。
(1)aの取りうる値の範囲を求めよ。
(2)s,tの値をaを用いて表せ。
(3)aが(1)で求めた範囲を動くときにsのとりうる値の範囲を求めよ。
(4)tの値をsを用いて表せ。

2022神戸大学理系過去問
この動画を見る 
PAGE TOP