福田の数学〜京都大学2025理系第1問(2−2)〜定積分の計算 - 質問解決D.B.(データベース)

福田の数学〜京都大学2025理系第1問(2−2)〜定積分の計算

問題文全文(内容文):

$\boxed{1}$

(2-2)次の定積分の値を求めよ。

$\displaystyle \int_{0}^{\frac{\pi}{2}} \sqrt{\dfrac{1-\cos x}{1+\cos x}}dx$

$2025$年京都大学理系過去問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(2-2)次の定積分の値を求めよ。

$\displaystyle \int_{0}^{\frac{\pi}{2}} \sqrt{\dfrac{1-\cos x}{1+\cos x}}dx$

$2025$年京都大学理系過去問題
投稿日:2025.03.09

<関連動画>

#茨城大学(2022) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \cos2x\times\sin\ x\ cos\ x\ dx$

出典:2022年茨城大学
この動画を見る 

福田の数学〜立教大学2024年理学部第1問(3)〜対数関数の極値と級数の和

アイキャッチ画像
単元: #関数と極限#積分とその応用#数列の極限#不定積分#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$$nは自然数とする。
f_{ n }(x)=x^{ \frac{ 1 }{ n }}\log x (x \gt0)がx=a_{ n }で極小値をとるとき、$$
$$a_{ n }=\boxed{ エ }である。このとき、\displaystyle \sum_{i=1}^n a_n=\boxed{ オ }である。$$
この動画を見る 

大学入試問題#521「部分積分もあるかもしれない」 信州大学(2004) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2} (x+2)\sqrt{ 4-x^2 }\ dx$

出典:2004年信州大学 入試問題
この動画を見る 

#広島市立大学(2011) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#広島市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{dx}{(x^2+1)^2}$

出典:2011年広島市立大学
この動画を見る 

大学入試問題#386「よく見かける問題」 #弘前大学(2009) #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{dx}{(3+x^2)^2}$

出典:2009年弘前大学 入試問題
この動画を見る 
PAGE TOP