問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 0 \lt t \lt 1とする。平行四辺形ABCDにおいて、線分AB,BC,CD,DAを\\
t:1-tに内分する点をそれぞれA_1,B_1,C_1,D_1とする。\\さらにA_2,B_2,C_2,D_2およびA_3,B_3,C_3,D_3を次の条件を満たすように定める。\\
(\ 条件\ )k=1,2について、点A_{k+1},B_{k+1},C_{k+1},D_{k+1}はそれぞれ線分A_kB_k,\\
B_kC_k,C_kD_k,D_kA_kをt:1-tに内分する。\\
\overrightarrow{ AB }=\overrightarrow{ a }, \overrightarrow{ AD }=\overrightarrow{ b }とするとき、以下の問いに答えよ。\\
(1)\overrightarrow{ A_1B_1 }=p\overrightarrow{ a }+q\overrightarrow{ b }, \overrightarrow{ A_1D_1 }=x\ \overrightarrow{ a }+y\ \overrightarrow{ b } を満たす実数p,q,x,yを\\
tを用いて表せ。\\
(2)四角形A_1B_1C_1D_1は平行四辺形であることを示せ。\\
(3)\overrightarrow{ AD }と\overrightarrow{ A_3B_3 }が平行となるようなtの値を求めよ。\\
\end{eqnarray}
2022筑波大学理系過去問
\begin{eqnarray}
{\Large\boxed{3}}\ 0 \lt t \lt 1とする。平行四辺形ABCDにおいて、線分AB,BC,CD,DAを\\
t:1-tに内分する点をそれぞれA_1,B_1,C_1,D_1とする。\\さらにA_2,B_2,C_2,D_2およびA_3,B_3,C_3,D_3を次の条件を満たすように定める。\\
(\ 条件\ )k=1,2について、点A_{k+1},B_{k+1},C_{k+1},D_{k+1}はそれぞれ線分A_kB_k,\\
B_kC_k,C_kD_k,D_kA_kをt:1-tに内分する。\\
\overrightarrow{ AB }=\overrightarrow{ a }, \overrightarrow{ AD }=\overrightarrow{ b }とするとき、以下の問いに答えよ。\\
(1)\overrightarrow{ A_1B_1 }=p\overrightarrow{ a }+q\overrightarrow{ b }, \overrightarrow{ A_1D_1 }=x\ \overrightarrow{ a }+y\ \overrightarrow{ b } を満たす実数p,q,x,yを\\
tを用いて表せ。\\
(2)四角形A_1B_1C_1D_1は平行四辺形であることを示せ。\\
(3)\overrightarrow{ AD }と\overrightarrow{ A_3B_3 }が平行となるようなtの値を求めよ。\\
\end{eqnarray}
2022筑波大学理系過去問
単元:
#大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 0 \lt t \lt 1とする。平行四辺形ABCDにおいて、線分AB,BC,CD,DAを\\
t:1-tに内分する点をそれぞれA_1,B_1,C_1,D_1とする。\\さらにA_2,B_2,C_2,D_2およびA_3,B_3,C_3,D_3を次の条件を満たすように定める。\\
(\ 条件\ )k=1,2について、点A_{k+1},B_{k+1},C_{k+1},D_{k+1}はそれぞれ線分A_kB_k,\\
B_kC_k,C_kD_k,D_kA_kをt:1-tに内分する。\\
\overrightarrow{ AB }=\overrightarrow{ a }, \overrightarrow{ AD }=\overrightarrow{ b }とするとき、以下の問いに答えよ。\\
(1)\overrightarrow{ A_1B_1 }=p\overrightarrow{ a }+q\overrightarrow{ b }, \overrightarrow{ A_1D_1 }=x\ \overrightarrow{ a }+y\ \overrightarrow{ b } を満たす実数p,q,x,yを\\
tを用いて表せ。\\
(2)四角形A_1B_1C_1D_1は平行四辺形であることを示せ。\\
(3)\overrightarrow{ AD }と\overrightarrow{ A_3B_3 }が平行となるようなtの値を求めよ。\\
\end{eqnarray}
2022筑波大学理系過去問
\begin{eqnarray}
{\Large\boxed{3}}\ 0 \lt t \lt 1とする。平行四辺形ABCDにおいて、線分AB,BC,CD,DAを\\
t:1-tに内分する点をそれぞれA_1,B_1,C_1,D_1とする。\\さらにA_2,B_2,C_2,D_2およびA_3,B_3,C_3,D_3を次の条件を満たすように定める。\\
(\ 条件\ )k=1,2について、点A_{k+1},B_{k+1},C_{k+1},D_{k+1}はそれぞれ線分A_kB_k,\\
B_kC_k,C_kD_k,D_kA_kをt:1-tに内分する。\\
\overrightarrow{ AB }=\overrightarrow{ a }, \overrightarrow{ AD }=\overrightarrow{ b }とするとき、以下の問いに答えよ。\\
(1)\overrightarrow{ A_1B_1 }=p\overrightarrow{ a }+q\overrightarrow{ b }, \overrightarrow{ A_1D_1 }=x\ \overrightarrow{ a }+y\ \overrightarrow{ b } を満たす実数p,q,x,yを\\
tを用いて表せ。\\
(2)四角形A_1B_1C_1D_1は平行四辺形であることを示せ。\\
(3)\overrightarrow{ AD }と\overrightarrow{ A_3B_3 }が平行となるようなtの値を求めよ。\\
\end{eqnarray}
2022筑波大学理系過去問
投稿日:2022.05.27