気付けば一瞬!!台形の面積 - 質問解決D.B.(データベース)

気付けば一瞬!!台形の面積

問題文全文(内容文):
1辺の長さが6である正方形において、対角線の交点$\rm{E}$を通る線分$\rm{PQ}$があったとき
四角形$\rm{ABQP}$の面積を求めよ。
単元: #数学(中学生)#中2数学#平行と合同#三角形と四角形
指導講師: 数学を数楽に
問題文全文(内容文):
1辺の長さが6である正方形において、対角線の交点$\rm{E}$を通る線分$\rm{PQ}$があったとき
四角形$\rm{ABQP}$の面積を求めよ。
投稿日:2024.06.23

<関連動画>

【高校数学】これが京大の入試問題!?中学生でも解けます #Shorts

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\triangle ABC$において、$AB=2,AC=1$とする。
$\angle BAC$の二等分線と辺$BC$の交点を$D$とする。
$AD=BD$となるとき、$\triangle ABC$の面積を求めよ。
この動画を見る 

【テスト対策・中1】1章-5

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の計算の①~⑥の部分で使われている計算法則を書きなさい.

$173+49+127=49+173+127=49+(173+127)=49+300=349$

$19 \times 131 - 19 \times 31 = 19 \times (131 - 31) = 19 \times 100 =1900$

$25 \times 72 \times 4 =72 \times 25 \times 4=72 \times (25 \times 4)=72 \times 100 =7200$

$12 \times \left(-\dfrac{1}{4}+\dfrac{7}{3}\right)-12\times \left(-\dfrac{1}{4}\right)+12\times \dfrac{7}{3} = -3 + 28 =25$

①~⑥は動画内参照
この動画を見る 

【分数…同じ部分…!】連立方程式:日本大学第三高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{2x+4}{3}+\dfrac{y+1}{2}=1 \\
2x+4-\dfrac{y+1}{6}=-\dfrac{1}{3}
\end{array}
\right.
\end{eqnarray}$
を解きなさい.

日大第三高校過去問
この動画を見る 

【高校受験対策/数学】死守72

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#平行と合同#確率#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守72

①$2-6$を計算しなさい。

➁$-3×(-2^2)$を計算しなさい。

③$\frac{2a+b}{ 3 }+\frac{a-b}{ 2 }$を計算しなさい。

④$xy^2×x^2÷xy$を計算しなさい。

⑤$\frac{6}{\sqrt{3}}+\sqrt{15}×\sqrt{5}$を計算しなさい。

⑥2次方程式$x^2+7x-18=0$ を解きなさい。

⑦$a=\sqrt{5}+3$のとき、$a^2-6a+9$の値を求めなさい。

⑧500円、100円、50円の硬貨が1枚ずつある。
この3枚を同時に1回投げるとき、表が出た硬貨の合計金額が500円以下になる確率を求めなさい。
ただし3枚の硬貨のそれぞれについて、表と裏の出方は同様に確からしいとする。

⑨右の図は底面の半径が$3cm$、側面になるおうぎ形の半径が$5cm$の円錐の展開図である。
これを組み立ててできる円錐の体積を求めなさい。
この動画を見る 

【数学】中2-16 連立方程式③ 加減法の応用編

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
係数が揃っていないなら①____算使って揃えちゃえばいい!

$\begin{eqnarray}
\left\{
\begin{array}{l}
x+2y=3 \\
2x-3y=-22
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
3x-2y=-8 \\
7x+4y=-10
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
2x+3y=3 \\
3x+5y=7
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
2x-3y=-19 \\
5x+4y=10
\end{array}
\right.
\end{eqnarray}$
この動画を見る 
PAGE TOP