問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (2)t \geqq 0に対して\hspace{210pt}\\
f(t)=2\pi\int_0^{2t}|x-t|\cos(2\pi x)dx-t\sin(4\pi t)\\
と定義する。このとき、\hspace{174pt}\\
f(t)=0\hspace{210pt}\\
を満たすtのうち、閉区間[0,1]に属する相異なるものはいくつあるか
\end{eqnarray}
早稲田大学教育学部過去問
\begin{eqnarray}
{\large\boxed{1}}\ (2)t \geqq 0に対して\hspace{210pt}\\
f(t)=2\pi\int_0^{2t}|x-t|\cos(2\pi x)dx-t\sin(4\pi t)\\
と定義する。このとき、\hspace{174pt}\\
f(t)=0\hspace{210pt}\\
を満たすtのうち、閉区間[0,1]に属する相異なるものはいくつあるか
\end{eqnarray}
早稲田大学教育学部過去問
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (2)t \geqq 0に対して\hspace{210pt}\\
f(t)=2\pi\int_0^{2t}|x-t|\cos(2\pi x)dx-t\sin(4\pi t)\\
と定義する。このとき、\hspace{174pt}\\
f(t)=0\hspace{210pt}\\
を満たすtのうち、閉区間[0,1]に属する相異なるものはいくつあるか
\end{eqnarray}
早稲田大学教育学部過去問
\begin{eqnarray}
{\large\boxed{1}}\ (2)t \geqq 0に対して\hspace{210pt}\\
f(t)=2\pi\int_0^{2t}|x-t|\cos(2\pi x)dx-t\sin(4\pi t)\\
と定義する。このとき、\hspace{174pt}\\
f(t)=0\hspace{210pt}\\
を満たすtのうち、閉区間[0,1]に属する相異なるものはいくつあるか
\end{eqnarray}
早稲田大学教育学部過去問
投稿日:2022.08.09