福田の数学〜早稲田大学2022年教育学部第1問(2)〜定積分で表された関数 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2022年教育学部第1問(2)〜定積分で表された関数

問題文全文(内容文):
${\large\boxed{1}}\ (2)t \geqq 0$に対して
$f(t)=2\pi\int_0^{2t}|x-t|\cos(2\pi x)dx-t\sin(4\pi t)$
と定義する。このとき、
$f(t)=0$
を満たすtのうち、閉区間[0,1]に属する相異なるものはいくつあるか

早稲田大学教育学部過去問
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}\ (2)t \geqq 0$に対して
$f(t)=2\pi\int_0^{2t}|x-t|\cos(2\pi x)dx-t\sin(4\pi t)$
と定義する。このとき、
$f(t)=0$
を満たすtのうち、閉区間[0,1]に属する相異なるものはいくつあるか

早稲田大学教育学部過去問
投稿日:2022.08.09

<関連動画>

大学入試問題#559「解法色々」 筑波大学(2020) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \sin^2x\ \cos2x\ dx$

出典:2020年筑波大学 入試問題
この動画を見る 

大学入試問題#153 東京医科大学(2017) 微積の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京医科大学#東京医科大学
指導講師: ますただ
問題文全文(内容文):
$x \gt 0$
$f(x)=\displaystyle \int_{1}^{x}\displaystyle \frac{x+4t}{\sqrt{ 3x^4+t^4 }}\ dt$において$f'(x)$を求めよ。

出典:2017年東京医科大学 入試問題
この動画を見る 

大学入試問題#327 埼玉大学(2010) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}}\displaystyle \frac{\sin\ x}{9+16\sin^2x}dx$

出典:2010年埼玉大学 入試問題
この動画を見る 

13愛知県教員採用試験(数学:7番 微積)

アイキャッチ画像
単元: #積分とその応用#定積分#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
7⃣
$f(x)=\int_0^x 6t+2dt+\int_0^a f(t) dt$
$f(0)=a(>0)$
aの値を求めよ
この動画を見る 

【数Ⅲ-164】定積分と不等式の証明

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分と不等式の証明)

①$0≦x≦1$のとき、$1-x^2≦1-x^4≦1$が成り立つことを示せ。
②不等式$\frac{\pi}{4} \lt \int_0^1\sqrt{1-x^4}dx \lt 1$を示せ。
この動画を見る 
PAGE TOP