数学「大学入試良問集」【10−1 外接する円と軌跡】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【10−1 外接する円と軌跡】を宇宙一わかりやすく

問題文全文(内容文):
座標平面上で点$(0,2)$を中心とする半径$1$の円を$C$とする。
$C$に外接し、$x$軸に接する円の中心$P(a,b)$が描く図形の方程式を求めよ。
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#数学(高校生)#津田塾大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
座標平面上で点$(0,2)$を中心とする半径$1$の円を$C$とする。
$C$に外接し、$x$軸に接する円の中心$P(a,b)$が描く図形の方程式を求めよ。
投稿日:2021.04.16

<関連動画>

どっちがでかい

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どっちがでかい?
$1.11^{111}\ vs\ 1111$
この動画を見る 

【数Ⅱ】式と証明:(茶番)突然問題を出されたから解いてみた

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
点$(x,y)$が$\frac{x^2}{4}+\frac{y^2}{5}=$1 $x>0$、$y>0$ を満たしながら動くとき、

$\log_{2}x + \log_{\frac{1}{2}}\frac{1}{y} $の最大値を求めよ。
この動画を見る 

中国Jr 数学Olympic あっと驚く解法も

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#式と証明#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^5=1,x \neq 1$とするとき,
$\dfrac{x}{1+x^2}+\dfrac{x^2}{1+x^4}+\dfrac{x^3}{1+x^6}+\dfrac{x^4}{1+x^8}$の値を求めよ.

中国jr数学オリンピック過去問
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試12AB第1問(2)〜対数方程式と対称式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#対数関数#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)1ではない正の実数$x,\ y$が次の条件を満たすとする。
$\left\{\begin{array}{1}
xy=\displaystyle\frac{1}{4}\\
\displaystyle\frac{1}{\log_2x}+\displaystyle\frac{1}{\log_2y}=\frac{8}{21}
\end{array}\right.$
このとき、$x+y=\frac{\boxed{\ \ キク\ \ }\sqrt{\boxed{\ \ ケ\ \ }}}{\boxed{\ \ コサ\ \ }}$である。

2022明治大学全統過去問
この動画を見る 

【数Ⅱ】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問2-2_図形と方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
mを実数の定数とする。xy平面上に 円$C:x^2+y^2-2x-6y+9=0$ 直線$l:y=mx$ がある。
(1)Cの中心の座標と半径を求めよ。
(2)Cとlが接するようなmの値を求めよ。
(3)(2)のときのCとlの接点をPとする。Pにおいてlに接し、x軸上に中心があるような円の方程式を求めよ
この動画を見る 
PAGE TOP