確率の基本問題 - 質問解決D.B.(データベース)

確率の基本問題

問題文全文(内容文):
2022福岡教育大学過去問題
n=1,2,3,4,5,6
サイコロを3回振って出た目の最大値がnとなる確率を$P_n$
出た目の最小値がnとなる確率を$Q_n$
$P_n$,$Q_n$をnを用いて表せ
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022福岡教育大学過去問題
n=1,2,3,4,5,6
サイコロを3回振って出た目の最大値がnとなる確率を$P_n$
出た目の最小値がnとなる確率を$Q_n$
$P_n$,$Q_n$をnを用いて表せ
投稿日:2023.07.29

<関連動画>

福田の数学〜東北大学2025理系第1問〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

原点を出発点として数直線上を動く点$P$がある。

試行(*)を次のように定める。


(*)

$1$枚の硬貨を$1$回投げて、
・表が出た場合は点$P$を正の向きに$1$だけ進める。
・裏が出た場合は$1$個のさいころを$1$回投げ、
 奇数の目が出た場合は点$P$を正の向きに$1$だけ進める
 偶数の目が出た場合は点$P$を負の向きに$2$だけ進める


ただし、硬貨を投げたとき裏表の出る確率は

それぞれ$\dfrac{1}{2}$,さいころを投げたとき

$1$から$6$までの整数の目の出る確率は

それぞれ$\dfrac{1}{6}$とする。

(1)試行(*)を$3$回繰り返した後に、

点$P$が原点に戻っている確率を求めよ。

(2)試行(*)を$6$回繰り返した後に、

点$P$が原点に戻っている確率を求めよ。

(3)$n$を$3$で割り切れない正の整数とする。

試行(*)を$n$回繰り返した後に、

点$P$が原点に戻っている確率を求めよ。

$2025$年東北大学理系過去問題
この動画を見る 

【数学Ⅰ・新課程】仮説検定の考え方【確率的に正しさを証明する】

アイキャッチ画像
単元: #数Ⅰ#確率#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$(1)ある企業の新商品について20人中15人が「よい」と回答した.$
$この商品は「よい」商品であるか,仮説検定の考え方を用いて考察せよ.$
$(2)A,B,C,D,E,Fの6人の候補者がいる.$
$100人中25人がAを支持していると答えた.$
$Aの支持者は多いと言えるか,仮説検定の考え方を用いて考察せよ.$
この動画を見る 

福田のおもしろ数学479〜ちょうど9回でゲームが終了する確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

コインを投げて表が出れば$1$点獲得し、裏が出たら

$2$点を失う。

コインを繰り返し投げて、持ち点が$1$点以下になれば

終了するゲームをする。

最初$10$点をもち、ゲームを始めて$9$回目にゲームが

終了する確率を求めて下さい。
    
この動画を見る 

部屋割り 組分け 他の問題もあり

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
部屋割り・グループ分け
(1)6人がAまたはBまたはCの3部屋に入る方法は何通り?
(1人も入らない部屋があってよい)
(2)6人を2つのグループに分ける方法は何通り?
(各グループは少なくとも2人以上)
(3)6人を3つのグループに分ける方法は何通り?
(各グループは少なくとも1人以上)
この動画を見る 

福田の数学〜東京理科大学2023年創域理工学部第1問(1)〜確率の基本性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)(a)1個のさいころを4回続けて投げるとき、4回とも同じ目が出る確率は
$\displaystyle\frac{1}{\boxed{\ \ アイウ\ \ }}$であり、3, 4, 5, 6の目がそれぞれ1回ずつ出る確率は$\displaystyle\frac{1}{\boxed{\ \ エオ\ \ }}$である。
(b)1個のさいころを4回続けて投げて、出た目を順に左から並べて4桁の整数Nを作る。例えば、1回目に2、2回目に6、3回目に1、4回目に2の目がでた場合はN=2612である。Nが偶数となる確率は$\displaystyle\frac{1}{\boxed{\ \ カ\ \ }}$であり、N≧2023 となる確率は$\displaystyle\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}$であり、N≧5555 となる確率は$\displaystyle\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシス\ \ }}$である。
この動画を見る 
PAGE TOP