確率の基本問題 - 質問解決D.B.(データベース)

確率の基本問題

問題文全文(内容文):
2022福岡教育大学過去問題
n=1,2,3,4,5,6
サイコロを3回振って出た目の最大値がnとなる確率を$P_n$
出た目の最小値がnとなる確率を$Q_n$
$P_n$,$Q_n$をnを用いて表せ
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022福岡教育大学過去問題
n=1,2,3,4,5,6
サイコロを3回振って出た目の最大値がnとなる確率を$P_n$
出た目の最小値がnとなる確率を$Q_n$
$P_n$,$Q_n$をnを用いて表せ
投稿日:2023.07.29

<関連動画>

【高校数学】組合せの例題~最低でもこれはできるように~ 1-10.5【数学A】

アイキャッチ画像
単元: #数Ⅰ#数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)正六角形の6個の頂点のうち3点を結んで三角形を作るとき、
  三角形は何個作れるか。

(2)6本の平行線と、それらに交わる7本の平行線によってできる
  平行四辺形は何個か。

(3)7人を次のようにする方法は何通りあるか。
  (a)部屋A、B、Cに2人ずつ入れ、部屋Dに1人入れる。
  (b)2人,2人,2人,1人の4組に分ける
この動画を見る 

福田の数学〜慶應義塾大学2021年商学部第2問〜確率の計算

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$
$a,k,n$は正の整数で、$a \lt k$とする。袋の中にk個の玉が入っている。そのうち
a個は赤玉で、残りの$k-a$個は青玉である。
「袋から1個の玉を取り出し、色を調べてから袋に戻すとともに、その玉と同色
の玉をn個袋に追加する」という操作を繰り返す。
$(\textrm{i})$1回目に赤玉が出たとき、2回目に赤玉が出る確率は$\boxed{\ \ ア\ \ }$である。
$(\textrm{ii})$2回目に赤玉が出る確率は$\boxed{\ \ イ\ \ }$である。
$(\textrm{iii})$2回目に青玉が出たとき、1回目に赤玉が出ていた確率は$\boxed{\ \ ウ\ \ }$である。
$(\textrm{iv})$この操作を3回繰り返す。1回ごとに赤玉が出たら1点、青玉が出たら2点
を得るとき、得点の合計が4点となる確率は$\boxed{\ \ エ\ \ }$である。

2021慶應義塾大学総合政策学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年経済学部第3問〜データの分析と条件付き確率

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#場合の数と確率#データの分析#データの分析#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$xの関数が印刷されているカード25枚が1つの袋に入っている。
その内訳は、11枚に$1-3x$、9枚に$1-2x$、4枚に$1-2x+2x^2$、1枚に$1-3x+5x^2$である。
この袋からカードを1枚取り出し、印刷されている関数を記録してから袋に戻すことを
100回繰り返したところ、記録の内訳は$1-3x$が46回、$1-2x$が35回、$1-2x+2x^2$が15回、
$1-3x+5x^2$が4回であった。
(1)記録された関数の実数xにおける値を$a_1,a_2,\ldots,a_{100}$とおく。
$a_1,a_2,\ldots,a_{100}$の平均値は、xの値を定めるとそれに対応して値が定まるので、
xの関数である。この関数は$x=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$のとき最小となり、その値は$-\frac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オ\ \ }}$である。
(2)記録された関数の$x=0$から$x=1$までの定積分を$b_1,b_2,\ldots,b_{100}$とおく。
$b_1,b_2,\ldots,b_{100}$の平均値は$-\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キク\ \ }}$であり、
分散は$\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}$である。
また、記録された関数の$x=1$における値を$c_1,c_2,\ldots,c_{100}$とおくとき、
100個のデータの組$(b_1,c_1),(b_2,c_2),\ldots,(b_{100},c_{100})$の共分散は$\frac{\boxed{\ \ スセ\ \ }}{\boxed{\ \ ソタ\ \ }}$である。
(3)カードがすべて袋に入った状態から1枚取り出したとき、印刷されている
関数の$x=1$における値が負である条件の下で、その関数の0から1までの定積分
が負である条件つき確率は$\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テト\ \ }}$である。

2022慶應義塾大学経済学部過去問
この動画を見る 

ただの因数分解と整数問題

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#場合の数と確率#式の計算(整式・展開・因数分解)#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
①因数分解せよ.
$(x-2)(x-1)(x+1)(x+2)+2$

②$n^5-5n^3+5n+7$が120の倍数となる自然数nを一つ求めよ.
この動画を見る 

福田の数学〜くじ引きは神様が決めた順列〜明治大学2023年理工学部第1問(3)〜くじ引きの確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (3)当たりくじ4本とはずれくじ6本からなる10本のくじがある。この中からAが2本のくじを同時に引き、その後Bが2本のくじを同時に引く。ただし、Aが引いたくじは元には戻さないものとする。
(a)Aの引いたくじが2本とも当たりである確率は$\frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソタ\ \ }}$である。
(b)AとBが引いたくじの中に1本も当たりがない確率は$\frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツテ\ \ }}$である。
(c)Aが引いたくじのうち1本だけが当たりで、かつBが引いたくじのうち1本だけが当たりである確率は$\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナ\ \ }}$である。
(d)Bの引いたくじが2本とも当たりである確率は$\frac{\boxed{\ \ ニ\ \ }}{\boxed{\ \ ヌネ\ \ }}$である。
この動画を見る 
PAGE TOP