#茨城大学2024_1#定積分 - 質問解決D.B.(データベース)

#茨城大学2024_1#定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \sin^5x\cos x$ $dx$

出典:2024年茨城大学
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \sin^5x\cos x$ $dx$

出典:2024年茨城大学
投稿日:2024.08.13

<関連動画>

福田の数学〜立教大学2025経済学部第1問(5)〜絶対値の付いた関数の定積分の計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(5)定積分$\displaystyle \int_{0}^{2} (x+1)\vert x-1 \vert dx$

の値は$\boxed{キ}$である。

$2025$年立教大学経済学部過去問題
この動画を見る 

福田の数学〜慶應義塾大学2022年環境情報学部第3問〜4次関数のグラフの接線と囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{3}}$xy平面上の曲線Cを$y=x^2(x-1)(x+2)$とする。
(1)Cに2点で下から接する直線Lの方程式は

$y=\frac{\boxed{\ \ アイウ\ \ }}{\boxed{\ \ エオカ\ \ }}\ x+\frac{\boxed{\ \ キクケ\ \ }}{\boxed{\ \ コサシ\ \ }}$である。

(2)CとLが囲む図の斜線部分の面積(※動画参照)は

$\frac{\boxed{\ \ スセソ\ \ }\sqrt{\boxed{\ \ タチツ\ \ }}}{\boxed{\ \ テトナ\ \ }}$となる。

ただし、次の公式を使ってもかまわない(m,nは正の整数)
$\int_{\alpha}^{\beta}(x-\alpha)^m(x-\beta)^ndx=\frac{(-1)^nm!n!}{(m+n+1)!}(\beta-\alpha)^{m+n+1}$

2022慶應義塾大学環境情報学部過去問
この動画を見る 

大学入試問題#628「3分クッキング!」 東邦大学医学部(2015) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#東邦大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-2}^{2} \displaystyle \frac{x^2・2^{-x}}{2^x+2^{-x}} dx$

出典:2015年東邦大学医学部 入試問題
この動画を見る 

#高専数学#不定積分_13#元高専教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{dx}{\sqrt{ x+1 }-\sqrt{ x }}$

出典:高専数学 問題集
この動画を見る 

#高専_6#不定積分#元高専教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
以下の不定積分を解け。
$\displaystyle \int (3x+1)\cos2x$ $dx$
この動画を見る 
PAGE TOP