【数Ⅱ】積分で定義された関数【積分区間を見て、計算結果を考えよう。】 - 質問解決D.B.(データベース)

【数Ⅱ】積分で定義された関数【積分区間を見て、計算結果を考えよう。】

問題文全文(内容文):
$(1)f(x)=3x^2-2x+ \displaystyle \int_{-1}^{1}f(t)dtを満たす関数f(x)を求めよ.$
$(2)f(x)=3x+\displaystyle \int_{0}^{1}(x+t)f(t)dtを満たす関数f(x)を求めよ.$
$(3)y=\displaystyle \int_{1}^{x}(t^2-2t-3)dtの極値を求めよ.$
$(4)\displaystyle \int_{1}^{x}f(t)dt=3x^2-2x+aを満たす関数f(x)と定数aを求めよ.$
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$(1)f(x)=3x^2-2x+ \displaystyle \int_{-1}^{1}f(t)dtを満たす関数f(x)を求めよ.$
$(2)f(x)=3x+\displaystyle \int_{0}^{1}(x+t)f(t)dtを満たす関数f(x)を求めよ.$
$(3)y=\displaystyle \int_{1}^{x}(t^2-2t-3)dtの極値を求めよ.$
$(4)\displaystyle \int_{1}^{x}f(t)dt=3x^2-2x+aを満たす関数f(x)と定数aを求めよ.$
投稿日:2022.09.25

<関連動画>

共通テスト2021年数学詳しい解説〜共通テスト2021年2B第2問〜微分積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#接線と増減表・最大値・最小値#センター試験・共通テスト関連#共通テスト#不定積分・定積分#面積、体積#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第2問}$
(1)座標平面上で、次の二つの2次関数のグラフについて考える。
$y=3x^2+2x+3$ $\cdots$①
$y=2x^2+2x+3$ $\cdots$②

①、②の2次関数のグラフには次の共通点がある。

共通点
・$y$軸との交点の$y$座標は$\boxed{\ \ ア\ \ }$である。
・$y$軸との交点における接線の方程式は$y=\boxed{\ \ イ\ \ }x+\boxed{\ \ ウ\ \ }$である。

次の⓪~⑤の2次関数のグラフのうち、$y$軸との交点における接線の方程式
が$y=\boxed{\ \ イ\ \ }x+\boxed{\ \ ウ\ \ }$となるものは$\boxed{\boxed{\ \ エ\ \ }}$である。

$\boxed{\boxed{\ \ エ\ \ }}$の解答群
⓪$y=3x^2-2x-3$
①$y=-3x^2+2x-3$
②$y=2x^2+2x-3$
③$y=2x^2-2x+3$
④$y=-x^2+2x+3$
⑤$y=-x^2-2x+3$

$a,b,c$を$0$でない実数とする。
曲線$y=ax^2+bx+c$上の点$\left(0, \boxed{\ \ オ\ \ }\right)$における接線をlとすると
その方程式は$y=\boxed{\ \ カ\ \ }x+\boxed{\ \ キ\ \ }$である。

接線$l$と$x$軸との交点の$x$座標は$\displaystyle \frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コ\ \ }}$である。
$a,b,c$が正の実数であるとき、曲線$y=ax^2+bx+c$と接線lおよび直線
$x=\displaystyle \frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コ\ \ }}$で囲まれた図形の面積をSとすると
$S=\displaystyle \frac{ac^{\boxed{サ}}}{\boxed{\ \ シ\ \ }\ b^{\boxed{ス}}}$ $\cdots$③
である。

③において、$a=1$とし、$S$の値が一定となるように正の実数$b,c$の値を
変化させる。このとき、$b$と$c$の関係を表すグラフの概形は$\boxed{\boxed{\ \ セ\ \ }}$る。


$\boxed{\boxed{\ \ セ\ \ }}$については、最も適当なものを、次の⓪~⑤のうちから一つ選べ。
(※選択肢は動画参照)

(2)座標平面上で、次の三つの3次関数のグラフについて考える。
$y=4x^3+2x^2+3x+5$ $\cdots$④
$y=-2x^3+7x^2+3x+5$ $\cdots$⑤
$y=5x^3-x^2+3x+5$ $\cdots$⑥

④、⑤、⑥の3次関数のグラフには次の共通点がある。
共通点
・$y$軸との交点の$y$座標は$\boxed{\ \ ソ\ \ }$である。
・$y$軸との交点における接線の方程式は$y=\boxed{\ \ タ\ \ }\ x+\boxed{\ \ チ\ \ }$である。

$a,b,c,d$を$0$でない実数とする。
曲線$y=ax^3+bx^2+cx+d$上の点$\left(0, \boxed{\ \ ツ\ \ }\right)$における接線の
方程式は$y=\boxed{\ \ テ\ \ }\ x+\boxed{\ \ ト\ \ }$である。

次に、$f(x)=ax^3+bx^2+cx+d,$ $g(x)=\boxed{\ \ テ\ \ }\ x+\boxed{\ \ ト\ \ }$とし、
$f(x)-g(x)$について考える。

$h(x)=f(x)-g(x)$とおく。$a,b,c,d$が正の実数であるとき、$y=h(x)$
のグラフの概形は$\boxed{\boxed{\ \ ナ\ \ }}$である。

$y=f(x)$のグラフと$y=g(x)$のグラフの共有点の$x$座標は$\displaystyle \frac{\boxed{\ \ ニヌ\ \ }}{\boxed{\ \ ネ\ \ }}$
と$\boxed{\ \ ノ\ \ }$である。また、$x$が$\displaystyle \frac{\boxed{\ \ ニヌ\ \ }}{\boxed{\ \ ネ\ \ }}$と$\boxed{\ \ ノ\ \ }$の間を動くとき、
$|f(x)-g(x)|$の値が最大となるのは、$x=\displaystyle \frac{\boxed{\ \ ハヒフ\ \ }}{\boxed{\ \ ヘホ\ \ }}$のときである。

$\boxed{\boxed{\ \ ナ\ \ }}$については、最も適当なものを、次の⓪~⑤のうちから一つ選べ。
(※選択肢は動画参照)

2021共通テスト過去問
この動画を見る 

東京電機大 積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#東京電機大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=3x^2-2\displaystyle \int_{-1}^{0} xf(t) dt+\displaystyle \int_{1}^{2} f(t) dt$
$f(x)$を求めよ

出典:2018年東京電機大学 過去問
この動画を見る 

#福岡大学#不定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#福岡大学
指導講師: ますただ
問題文全文(内容文):
以下の不定積分を解け
$\displaystyle \int \displaystyle \frac{x}{\sqrt{ 2x+1 }}$ $dx$

出典:福岡大学
この動画を見る 

【積分】積分がなぜ面積を求められるのかについて解説しました!【数学III】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
積分の原理を解説します。
この動画を見る 

東大 積分 ヨビノリたくみ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$0 \leqq t \leqq 2,x^4-2x^2-1+t=0$の実数解のうち
最大のもの:$g_1(t)$
最小のもの:$g_2(t)$

$\displaystyle \int_{0}^{2} (g_1(t)-g_2(t)) dx$

出典:1993年東京大学 過去問
この動画を見る 
PAGE TOP