#高専#ウォリス積分_15#元高専教員 - 質問解決D.B.(データベース)

#高専#ウォリス積分_15#元高専教員

問題文全文(内容文):
(1)$\displaystyle \int_{0}^{\frac{\pi}{2}} \sin^7 x$ $dx$

(2)$\displaystyle \int_{0}^{\frac{\pi}{2}} \cos^8 x$ $dx$
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)$\displaystyle \int_{0}^{\frac{\pi}{2}} \sin^7 x$ $dx$

(2)$\displaystyle \int_{0}^{\frac{\pi}{2}} \cos^8 x$ $dx$
投稿日:2024.08.26

<関連動画>

【数Ⅲ】部分積分【公式不要!微分して被積分関数になるものを作り出せ】

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: めいちゃんねる
問題文全文(内容文):
$ (1)\displaystyle \int x\cos x dxを求めよ.$
$ (2)\displaystyle \int (2x+1)\sin 3x dxを求めよ.$
$ (3)\displaystyle \int \log x dx,\displaystyle \int x\log x dx,\displaystyle \int \log(2x+1)dxを求めよ.$
$ (4)\displaystyle \int_{0}^{\pi} x^2\sin x dxを求めよ.$
$ (5)\displaystyle \int_{0}^{\pi} e^x \sin x dxを求めよ.$
この動画を見る 

大学入試問題#637「朝のトーストと一緒にどうぞ!」埼玉大学

アイキャッチ画像
単元: #大学入試過去問(数学)#不定積分#数学(高校生)#埼玉大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{1}{e^x-e^{-x}} dx$

出典:2017年埼玉大学 入試問題
この動画を見る 

練習問題31 積分 数検準1級 教採対応

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#定積分#その他#数学検定#数学検定準1級#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \dfrac{\tan^{-1}x+1}{x^2+1}dx$
を計算せよ.
この動画を見る 

【数Ⅲ】【積分とその応用】不定積分置換積分、部分積分1 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の不定積分を求めよ。
(1) $\displaystyle \int x\sqrt[3]{1+x}~dx$
(2) $\displaystyle \int \sin x \cos^4x~dx$
(3) $\displaystyle \int \frac {dx}{\cos^4x}$
(4) $\displaystyle \int (2x+1)e^{x^2+x+5}~dx$
(5) $\displaystyle \int \frac{e^{2x}}{(e^x+2)^2}~dx$
(6) $\displaystyle \int \frac{\log x}{x(\log x-1)^2}~dx$


次の不定積分を求めよ。
(1) $\displaystyle \int \frac{x}{\cos^2x}~dx$
(2) $\displaystyle \int x\log(x-2)~dx$

次の不定積分を求めよ。
(1) $\displaystyle \int x\log(x^2-2)~dx$
(2) $\displaystyle \int e^x\log(e^x+1)~dx$

不定積分$\displaystyle \int (\log x)^3~dx$を求めよ。
この動画を見る 

【積分】「積分って結局なにしてるの?」について解説しました!【数学III】

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: 3rd School
問題文全文(内容文):
積分がなぜ成り立つかを解説します!
気になった人は是非!
この動画を見る 
PAGE TOP