福田のおもしろ数学473〜難しい連立方程式を解くための飛び道具 - 質問解決D.B.(データベース)

福田のおもしろ数学473〜難しい連立方程式を解くための飛び道具

問題文全文(内容文):

$\begin{eqnarray}
\left\{
\begin{array}{l}
5\left(x+\dfrac{1}{x}\right)=12\left(y+\dfrac{1}{y}\right)=13\left(z+\dfrac{1}{z}\right) \\
xy+yz+zx=1
\end{array}
\right.
\end{eqnarray}$

を満たす実数$x,y,z$をすべて求めよ。
単元: #連立方程式#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\begin{eqnarray}
\left\{
\begin{array}{l}
5\left(x+\dfrac{1}{x}\right)=12\left(y+\dfrac{1}{y}\right)=13\left(z+\dfrac{1}{z}\right) \\
xy+yz+zx=1
\end{array}
\right.
\end{eqnarray}$

を満たす実数$x,y,z$をすべて求めよ。
投稿日:2025.04.19

<関連動画>

福田のおもしろ数学500〜循環形式の連立方程式を解こう

アイキャッチ画像
単元: #連立方程式#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\begin{eqnarray}
\left\{
\begin{array}{l}
(x-1)(y^2+6)=y(x^2+1) \\
(y-1)(x^2+6)=x(y^2+1)
\end{array}
\right.
\end{eqnarray}$

を満たす実数$x,y$をすべて求めて下さい。
    
この動画を見る 

【中学数学】連立方程式の基礎を総復習【中2夏期講習①】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$
\displaystyle (1)
\begin{cases}
2x + y = 5\\
-x + y = 2
\end{cases}
$
$
\displaystyle (2)
\begin{cases}
4x - 3y = -9\\
3x - 7y = 17
\end{cases}
$
$
\displaystyle (1)
\begin{cases}
2x + y = 5\\
-x + y = 2
\end{cases}
$
$
\displaystyle (4)
\begin{cases}
x = -3y - 2\\
x + 12y = 4
\end{cases}
$
$
\displaystyle (5)
\begin{cases}
2x + 3y = 7\\
4x - 3y = 5
\end{cases}
$
$
\displaystyle (6)
\begin{cases}
7x + 6y = -4\\
8x - 15y = -24
\end{cases}
$
この動画を見る 

【本当に解はあるのか!?】整数:日本大学習志野高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#高校入試過去問(数学)#日本大学習志野高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
3つの自然数$ x,y,z(x \lt y \lt z)$である.
$ x+y+z=20 $
$ xyz=60 $  満たす.

このとき, $ x=\Box,y=\Box,z=\Box $

日大習志野高校過去問
この動画を見る 

指数の連立方程式

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 数学を数楽に
問題文全文(内容文):
\begin{eqnarray}
\left\{
\begin{array}{l}
2^{x-y}-x-y = 0 \\
2-(x+y)^{x-y}=0
\end{array}
\right.
\end{eqnarray}
x=? y=?
この動画を見る 

連立2元4次方程式

アイキャッチ画像
単元: #連立方程式#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
x^4+x^2y^2+y^4=63 \\
x^2+xy+y^2=9
\end{array}
\right.
\end{eqnarray}$
これを解け.
この動画を見る 
PAGE TOP