中1数学「比例のグラフの式の求め方」【毎日配信】 - 質問解決D.B.(データベース)

中1数学「比例のグラフの式の求め方」【毎日配信】

問題文全文(内容文):
比例のグラフの式の求め方に関して解説していきます。
単元: #数学(中学生)#中1数学#比例・反比例
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
比例のグラフの式の求め方に関して解説していきます。
投稿日:2020.11.09

<関連動画>

福田のおもしろ数学075〜1分チャレンジ〜扇形から作る円錐の体積

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形
指導講師: 福田次郎
問題文全文(内容文):
半径5、中心角288°の扇形をまるめて、円錐形のコップを作る。その容積は?
この動画を見る 

【中1 数学】中1-67 図形の移動② ~問題編~

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①㋑を平行移動して重なるのは?

②△OAEを平行移動して重なるのは?

③㋖をHFを対称の軸として対称移動して重なるのは?

④△OAEを点Oを回転の中心として回転移動して重なるものをすべて書こう!

⑤△ODGを点Oを回転の中心として、反時計回りに90°回転移動し、さらにEGを対称の軸として対称移動して重なるのは?
※図は動画内参照
この動画を見る 

高等学校入学試験予想問題:洛南高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#空間図形#1次関数#2次関数#平面図形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ \left(4-\dfrac{7}{3}\right)\times \left(-\dfrac{3}{5}+\dfrac{1}{2}\right)$を計算せよ.
(2)$ \ell:y=(a+2)x+b-1$
$ m:y=bx-a^2 $について,
$ a=\sqrt2,b=1$のとき,$ \ell,m$の交点は?
(3)$ a=\sqrt5-\sqrt3,b=\sqrt5+\sqrt3 $のとき,$ a^2-ab-b^2$の値は?

$ \boxed{2}$

図のように,2点$ A,B $が$ y-ax^2 $のグラフ上にあり,$ A $の座標は$ (3,27)$,$B$のx座標は-2である.
3点$ C,D,E $は直線$ OA $上,$ \triangle OBC,\triangle BCF,\triangle CFD,\triangle FDG,
\triangle DGE,\triangle GEA $の面積はすべて等しい.
このとき,次の問いに答えよ.
(1)点$ B$のy座標を求めよ.
(2)点$ C $の座標を求めよ.
(3)直線$ EG $の傾きを求めよ.

$ \boxed{3}$

図のように,底面の半径が3cm,母線の長さが5cmの円錐の中に半径の等しい2つの球$ P,Q $があります.
2つの球$ P,Q $は互いに接し,円錐の底面と側面に接しているとき,次の問いに答えなさい.
ただし,2つの球の中心と,円錐の頂点と,円錐の底面の中心は同じ平面上にあるものとする.
(1)球$ P$の半径を求めよ.
(2)円錐の体積は,$ P $の体積の何倍か.
(3)球$ P $と円錐の側面が接する点を$ A $とする.
点$ A $を通り,円錐の底面に平行な平面で球$ P $を切断するとき,球$ P $の切断面の面積を求めよ.
この動画を見る 

【中1 数学】中1-54 比例 ・ 反比例の表の特徴

アイキャッチ画像
単元: #数学(中学生)#中1数学#比例・反比例
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎yはxに比例する。

①xとyの関係を式に表すと?
②上の表を完成させよう!
③xが2倍、3倍…となるとyはどうなる?

◎yはxに反比例する。

④xとyの関係を式に表すと?
⑤上の表を完成させよう!
⑥xが2倍、3倍…となるとyはどうなる?
②と⑤の表は動画内参照
この動画を見る 

【高校受験対策/数学】死守57

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#1次関数#確率
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守57

①$6\times (-3)$を計算しなさい。

②$9-(-4)^2 \times \frac{5}{8}$を計算しなさい。

③$a^2b×21b \div 7a$を計算しなさい。

④連立方程式
$0.2x+1.5y=4$
$x-3y=-1$を解きなさい。

⑤$\frac{12}{\sqrt{3}}-3\sqrt{6} \times \sqrt{8}$を計算しなさい。

⑥二次方程式$x^2+5x+5=0$を解きなさい。

⑦ある美術館の入館料は、おとな1人が$a$円、中学生1人が$b$円である。
このとき、不等式$2a+3b \gt 2000$が表している数量の関係として最も適当なものを、次のア~エのうちから1つ選び、符号で答えなさい。

ア おとな2人と中学生3人の入館料の合計は、2000円より安い。
イ おとな2人と中学生3人の入館料の合計は、2000円より高い。
ウ おとな2人と中学生3人の入館料の合計は、2000円以下である。
エ おとな2人と中学生3人の入館料の合計は、2000円以上である。

⑧-5、-2、-1、3、6、10の整数が1つずつ書かれた6枚のカードがある。
この6枚のカードをよくきって、同時に2枚ひく。
このとき、ひいた2枚のカードに書かれた数の平均値が、自然数になる確率を求めなさい。
ただし、どのカードをひくことも同様に確からしいものとする。
この動画を見る 
PAGE TOP