【中学数学】2次方程式:図形に関する問題⑧ 容器を作る問題 もとの長方形の厚紙の縦の長さを求めなさい。 - 質問解決D.B.(データベース)

【中学数学】2次方程式:図形に関する問題⑧ 容器を作る問題 もとの長方形の厚紙の縦の長さを求めなさい。

問題文全文(内容文):
右の図のように、横の長さが縦の長さより4cm長い長方形の厚紙の4すみから、1辺2cmの正方形を切り取って、その残りの厚紙を点線にそって折り曲げて直方体の容器を作ったら、容積が90cm³になった。もとの長方形の厚紙の縦の長さを求めなさい。
単元: #数学(中学生)#中3数学#2次方程式
指導講師: 理数個別チャンネル
問題文全文(内容文):
右の図のように、横の長さが縦の長さより4cm長い長方形の厚紙の4すみから、1辺2cmの正方形を切り取って、その残りの厚紙を点線にそって折り曲げて直方体の容器を作ったら、容積が90cm³になった。もとの長方形の厚紙の縦の長さを求めなさい。
投稿日:2020.09.25

<関連動画>

【高校受験対策/数学】関数50

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数50

右の図のように、2つの関数$y=\frac{1}{2}x^2$・・・①、$y=x^2$・・・②のグラフがあります。
①のグラフ上に、点Aがあり、点Aの$x$座標を$t$とします。
点Aと軸について対称な点をBとし、点Aと$x$座標が等しい②のグラフ上の点をCとします。
また、②のグラフ上に点Dがあり、点Dの$x$座標を負の数とします。
$t \gt 0$として、次の問いに答えなさい。

問1 四角形ABCDが長方形となるとき、点Dの座標を$t$を使って表しなさい。

問2 $t=4$とします。点Cを通り傾きが$ー3$の直線の式を求めなさい。

問3 2点B,Cを通る直線の傾きが$-2と$なるとき、点Aの座標を求めなさい。
この動画を見る 

中学生でもわかる解の公式の証明【中3以上必見】

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次方程式
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
解の公式の証明 解説動画です
この動画を見る 

この問題一瞬で解ける?

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
二次関数の直線が一瞬で求まる裏技に関して解説します。
この動画を見る 

【高校受験対策】数学-関数36

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数36

Q.
右の図で曲線は関数$y=x^2$のグラフです。2点A・Bは、$x>0$の部分にあり、 それぞれの$y$座標は$1,16$です。また、点Pは$y$軸上の$1 \lt y \lt 16$の部分にあります。
次の各問に答えなさい。

①2点A、Bの座標をそれぞれ求めなさい。

②関数$y=x^2$で、$x$の変域が$-3 \leqq x \leqq 2$のとき、$y$の変域を求めなさい。

③△ABPの面積が$14cm^2$のとき、点Pの座標を求めなさい。
ただし、座標軸の単位の長さを$1cm$とします。
この動画を見る 

【高校受験対策】数学-死守24

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#円#立体図形#立体切断#立体図形その他#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$-7+9$を計算しなさい.

②$1+\left(-\dfrac{5}{6}\right)\div \dfrac{1}{3}$を計算しなさい.

③$8(x - y) + 6(x - 2y)$を計算しなさい.

④$\sqrt{27} - \dfrac{6}{\sqrt3}$を計算しなさい.

⑤$x(x + 2) - (x + 4)(x - 3)$を計算しなさい.

⑥絶対値が$2.5$より小さい整数はいくつあるか,求めなさい.

⑦2つの方程式$3x + y = 11$と$x + 3y = 1$両方にあてはまる$x,y$の値の組がある.
このとき,$x^2-y^2$の値を求めなさい.

⑧右の図のおうぎ形$OAB$は,半径$3cm$,中心角$90°$である.
このおうぎ形$OAB$を, $AD$を通る直線$\ell$を軸として1回転させてできる
立体の体積と表面積を求めなさい.
ただし,円周率は$\pi$とする.

⑨右の表は,ある中学校における男子15人の50m走の記録を
度数分布表に表したものである.
この表の8.5秒以上9.0秒未満の階級の相対度数を求めなさい.

図は動画内参照
この動画を見る 
PAGE TOP