宇都宮大学 漸化式 高校数学 大学入試 Japanese university entrance exam questions - 質問解決D.B.(データベース)

宇都宮大学 漸化式 高校数学 大学入試 Japanese university entrance exam questions

問題文全文(内容文):
宇都宮大学過去問題
$a_1=1 \quad$初項~第n項までの和を$S_n$
$a_{n+1}=9a_n -4S_n$
(1)一般項$a_n$を求めよ。
(2)$S_n$をnで表せ。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#大学入試解答速報
指導講師: 鈴木貫太郎
問題文全文(内容文):
宇都宮大学過去問題
$a_1=1 \quad$初項~第n項までの和を$S_n$
$a_{n+1}=9a_n -4S_n$
(1)一般項$a_n$を求めよ。
(2)$S_n$をnで表せ。
投稿日:2018.05.31

<関連動画>

早稲田 指数・対数 不等式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#整数の性質#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
早稲田大学過去問題
$6^x-2・2^x-9・3^x+18 \leqq 0$を満たす整数xの最小値・最大値を求めよ。
この動画を見る 

大学入試の因数分解 神戸女子大

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$a^4+a^2b^2+b^4$

神戸女子大学
この動画を見る 

福田の数学〜微分積分の基本問題〜明治大学2023年全学部統一ⅠⅡAB第2問〜関数の増減と3次方程式の解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ $k$を正の実数とし、$x$の関数$f(x)$を
$f(x)$=$x^3$$-3kx^2$$+9(k^2+2k-3)$
により定める。関数$f(x)$は$x$=$\boxed{\ \ ア\ \ }$で極大値$\boxed{\ \ イ\ \ }k^2$+$\boxed{\ \ ウエ\ \ }k$-$\boxed{\ \ オカ\ \ }$をとり、
$x$=$\boxed{\ \ キ\ \ }$で極小値$-\boxed{\ \ ク\ \ }k^3$+$\boxed{\ \ イ\ \ }k^2$+$\boxed{\ \ ウエ\ \ }k$-$\boxed{\ \ オカ\ \ }$ をとる。
以下、$f(x)$の極小値が0になる$k$の値を$a$,$b$(ただし、$a$<$b$)、$f(x)$の極大値が0となる$k$の値を$c$とする。このとき、
$a$=$\displaystyle\frac{\boxed{\ \ ケ\ \ }\left(\sqrt{\boxed{\ \ コサ\ \ }}-\boxed{\ \ シ\ \ }\right)}{\boxed{\ \ ス\ \ }}$, $b$=$\boxed{\ \ セ\ \ }$, $c$=$\boxed{\ \ ソ\ \ }$
である。座標平面において、$k$=$\boxed{\ \ セ\ \ }$のとき、$x$軸の$x$≧0の部分と$y$軸の$y$≧0 の部分と$y$=$f(x)$のグラフとで囲まれた図形の面積は$\boxed{\ \ タチツ\ \ }$である。
方程式$f(x)$=0 が異なる3つの実数解を持つための必要十分条件は$\boxed{\ \ テ\ \ }$である。

$\boxed{\ \ ア\ \ }$, $\boxed{\ \ キ\ \ }$の解答群
⓪0 ①$\frac{k}{2}$ ②$\frac{2k}{3}$ ③$k$ ④$\frac{4k}{3}$ 
⑤$2k$ ⑥$-\frac{k}{2}$ ⑦$-\frac{2k}{3}$ ⑧$-k$ ⑨$-2k$ 

$\boxed{\ \ テ\ \ }$の解答群
⓪$k$<$a$, $b$<$k$<$c$ ①$k$<$a$, $c$<$k$<$b$ ②$k$<$c$, $a$<$k$<$b$ 
③$a$<$k$<$b$, $c$<$k$ ④$a$<$k$<$c$, $b$<$k$ ⑤$c$<$k$<$a$, $b$<$k$ 
⑥$a$<$k$<$c$ ⑦$c$<$k$<$a$ ⑧$b$<$k$<$c$ ⑨$c$<$k$<$b$ 
この動画を見る 

数学「大学入試良問集」【14−6ベクトル方程式と領域図示】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\triangle ABC$において$\overrightarrow{ CA }=\vec{ a },\overrightarrow{ CB }=\vec{ b }$とする。
次の問いに答えよ。

(1)
実数$s,t$が$0 \leqq s+t \leqq 1,s \geqq 0,t \geqq 0$の範囲を動くとき、次の各条件を満たす点$P$の存在する範囲をそれぞれ図示せよ。
 (a)$\overrightarrow{ CP }=s\vec{ a }+t(\vec{ a }+\vec{ b })$
 (b)$\overrightarrow{ CP }=(2s+t)\vec{ a }+(s-t)\vec{ b }$

(2)
(1)の各場合に、点$P$の存在する範囲の面積は$\triangle ABC$の面積の何倍か。
この動画を見る 

佐賀大 三次関数上の三角形の面積 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
佐賀大学過去問題
$y=x^3-x$のグラフ上を点Pが原点から、$A(a,a^3-a)(a>0)$まで動く。
△OAPの最大値
この動画を見る 
PAGE TOP