【数学B/平面ベクトル】ベクトルの内積(公式と使い方) - 質問解決D.B.(データベース)

【数学B/平面ベクトル】ベクトルの内積(公式と使い方)

問題文全文(内容文):
2つのベクトル$\vec{ a },\vec{ b }$について、$\vec{ a }$と$\vec{ b }$の内積を求めよ。
(1)$|\vec{ a }|=2,|\vec{ b }|=3,\theta=45^{ \circ }$
(2)$|\vec{ a }|=1,|\vec{ b }|=4,\theta=150^{ \circ }$
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
2つのベクトル$\vec{ a },\vec{ b }$について、$\vec{ a }$と$\vec{ b }$の内積を求めよ。
(1)$|\vec{ a }|=2,|\vec{ b }|=3,\theta=45^{ \circ }$
(2)$|\vec{ a }|=1,|\vec{ b }|=4,\theta=150^{ \circ }$
投稿日:2022.01.12

<関連動画>

福田の数学〜大阪大学2022年文系第1問〜交点の位置ベクトルと線分の長さ

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
三角形ABCにおいて、辺ABを2:1に内分する点をM、辺ACを1:2に内分する点をNとする。
また、線分BNと線分CMの交点をPとする。
(1)$\overrightarrow{ AP }$を、$\overrightarrow{ AB }$と$\overrightarrow{ AC }$を用いて表せ。
(2)辺BC,CA,CBの長さをそれぞれa,b,cとするとき、線分APの長さを、a,b,cを用いて表せ。

2022大阪大学文系過去問
この動画を見る 

【数B】平面ベクトル:ベクトルの内積を基礎から

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
ベクトルの内積の公式を説明する動画です!
この動画を見る 

【数C】ベクトルの基本⑤内積の基本計算1 始点を揃えて考える

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
内積の基本計算(直角三角形ABCにおける内積計算)
この動画を見る 

【数B】ベクトル:ベクトルの基本⑬内心ベクトルの求め方

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
角$A=60°,AB=8,AC=5$である三角形ABCの内心をIとする。$AB=b,AC=c$とするときAIをb,cを用いて表せ.
この動画を見る 

福田の数学〜東京科学大学(旧・東京工業大学)2025理系第2問〜ねじれの位置にある直線上の2点ずつでできる四面体の体積の最大最小

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

空間の点$(0,0,1)$を通り

$(1,-1,0)$を方向ベクトルとする

直線を$\ell$とし、点$(1,0,3)$を通り$(0,1,-2)$を

方向ベクトルとする直線を$m$とする。

(1)$P$を$\ell$上の点とし、$Q$を$m$上の点とする。

また直線$PQ$は直線$\ell$と直線$m$に垂線であるとする。

このとき$P$と$Q$の座標、

および線分$PQ$の長さを求めよ。

(2)$\ell$上に$2$点

$A=(t,-t,1),$

$B(2+t+\sin t,-2-t-\sin t,1)$

があり、$m$上に$2$点

$C=(1,t,3,-2t),$

$D=(1,2+t<\cos t,-1-2t-2\cos t)$

があるとする。ただし、$y$は実数とする。

四面体$ABCD$の体積を$V(t)$とする。

$V(0)$を求めよ。

(3)$t$が$t\geqq 0$を動くとき、

$V(t)$の最大値と最小値を求めよ。

$2025$年東京科学大学(旧・東京工業大学)
理系過去問題
この動画を見る 
PAGE TOP