【高校数学】 数A-61 作図⑤ - 質問解決D.B.(データベース)

【高校数学】 数A-61 作図⑤

問題文全文(内容文):
①1辺の長さを1とする正五角形の対角線の長さを求めよう.

②線分$AB$を1辺とする正五角形を作図しよう.
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①1辺の長さを1とする正五角形の対角線の長さを求めよう.

②線分$AB$を1辺とする正五角形を作図しよう.
投稿日:2016.05.18

<関連動画>

36度

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
x=?
*図は動画内参照
この動画を見る 

ラ・サール高校の整数問題

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a,b,c,dは0または正の整数。
\begin{eqnarray}
\left\{
\begin{array}{l}
ad + bc = 2 \\
a + b + c + d = 4
\end{array}
\right.
\end{eqnarray}
を満たす(a,b,c,d)の組はいくつか?

ラ・サール学園
この動画を見る 

福田の数学〜九州大学2023年文系第4問PART2〜確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $w$を$x^3$=1 の虚数解のうち虚部が正であるものとする。さいころを繰り返し投げて、次の規則で4つの複素数0, 1, $w$, $w^2$を並べていくことにより、複素数の列$z_1$, $z_2$, $z_3$, ... を定める。
・$z_1$=0 とする。
・$z_k$まで定まった時、さいころを投げて、出た目を$t$とする。このとき$z_{k+1}$を以下のように定める。
・$z_k$=0 のとき、$z_{k+1}$=$w^t$ とする。
・$z_k$≠0, $t$=1, 2のとき、$z_{k+1}$=0 とする。
・$z_k$≠0, $t$=3のとき、$z_{k+1}$=$wz_k$ とする。
・$z_k$≠0, $t$=4のとき、$z_{k+1}$=$\bar{wz_k}$ とする。
・$z_k$≠0, $t$=5のとき、$z_{k+1}$=$z_k$ とする。
・$z_k$≠0, $t$=6のとき、$z_{k+1}$=$\bar{z_k}$ とする。
ここで複素数$z$に対し、$\bar{z}$は$z$と共役な複素数を表す。以下の問いに答えよ。
(1)$ω^2$=$\bar{ω}$であることを示せ。
(2)$z_n$=0となる確率を$n$の式で表せ。
(3)$z_3$=1, $z_3$=$ω$, $z_3$=$ω^2$となる確率をそれぞれ求めよ。
(4)$z_n$=1となる確率を$n$の式で表せ。

2023九州大学文系過去問
この動画を見る 

福田の数学〜慶應義塾大学看護医療学部2025第4問〜放物線と接線の囲む面積と内積の最小値

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

$k$を実数の定数とし、

座標平面上に$2$点$A(1,-3),B(-1,k)$をとる。

また、放物線$y=x^2$を$C$とする。

以下に答えなさい。

(1)点$A$から曲線$C$に引いた$2$本の接線のうち、

傾きが正の接線を$\ell_1$とし、

傾きが負の接線を$\ell_2$とするとき、

直線$\ell_1$の方程式は$y=\boxed{テ}$であり、

直線$\ell_2$の方程式は$y=\boxed{ト}$である。

また、$2$直線$\ell_1,\ell_2$のなす角を$\theta$とすると、

$\tan\theta=\boxed{ナ}$である。

ただし、$0\lt\theta\lt\dfrac{\pi}{2}$とする。

さらに、曲線$C$と$2$直線$\ell_1,\ell_2$で囲まれた

図形の面積は$\boxed{ニ}$である。

(2)点$P$が曲線$C$全体を動くときの

$\overrightarrow{PA}・\overrightarrow{PB}$の最小値を$m$とする。

このとき、$m$を$k$を用いて表すと、

$k\geqq \boxed{ヌ}$のときは$m=\boxed{ネ}$であり、

$k\lt \boxed{ヌ}$のときは、$m=\boxed{ノ}$である。

$2025$年慶應義塾大学看護医療学部過去問題
この動画を見る 

【分ければカンタン!】三角関数のグラフの移動と拡大を5分で解説!〔数学、高校数学〕

アイキャッチ画像
単元: #数A#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
三角関数のグラフの移動と拡大について解説します。
この動画を見る 
PAGE TOP