【数C】【複素数平面】複素数と図形2 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数C】【複素数平面】複素数と図形2 ※問題文は概要欄

問題文全文(内容文):
次の方程式を満たす点$z$全体の集合はどのような図形か。
(1) $z+\bar{z}=2$ (2) $z-\bar{z}=2i$
チャプター:

0:00 オープニング
0:04 第一手が大切
1:34 (1)を解く!
2:44 (2)を解く!
3:41 エンディング

単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の方程式を満たす点$z$全体の集合はどのような図形か。
(1) $z+\bar{z}=2$ (2) $z-\bar{z}=2i$
投稿日:2025.03.09

<関連動画>

【高校数学】 数B-52 座標空間における図形③

アイキャッチ画像
単元: #平面上のベクトル#複素数平面#ベクトルと平面図形、ベクトル方程式#図形への応用#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$(x+5)^2+(y-1)^2+(z-2)^2=13$が$xy$平面と交わってできる
図形の方程式を求めよう.

②中心が$(1,a,2)$,半径が6の球面が$zx$平面と交わってできる
円の半径が$3\sqrt3$であるとき,$a$の値を求めよ.

③方程式$x^2+y^2+z^2-2x+4y+6z=2$はどのような図形を
表しているか答えよう.
この動画を見る 

福田の数学〜東京大学2018年理系第5問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数平面上の原点を中心とする半径 1 の円を C とする。
点 P(z) は C 上にあり、点 A(I) とは異なるとする。
点 P における円 C の接線に関して、点 A と対称な点を Q(u) とする。
$\omega=\displaystyle \frac{1}{1-u}$とおき$\omega$と共役な複素数を$\overline{ \omega }$で表す。

(1)uと$\displaystyle \frac{\overline{ \omega }}{\omega}$をzについての整数として表し、絶対値の値$\displaystyle \frac{\vert \omega+\overline{ \omega }-1 \vert}{\vert \omega \vert}$を求めよ。
(2)Cのうち実部が$\frac{1}{2}$以下の複素数平面で表される部分をCとする。点P(z)がC’上を動くときの点R($\omega$)の軌跡を求めよ。
  $\omega=x+yi$(x,yは実数)とおく。

2018東大理系過去問
この動画を見る 

福田の数学〜上智大学2022年理工学部第3問〜複素数平面上の点列と三角形の相似

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#相似な図形#数列#漸化式#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数からなる数列${z_n}$を、次の条件で定める。
$z_1=0,\ \ \ z_{n+1}=(1+i)z_n-i \ \ \ (i=1,2,3, \ \ ...)$
正の整数nに対し、z_nに対応する負素数平面上の点をA_nとおく。
(1)$z_2=\boxed{ツ }+\boxed{ツ }\ i, \ \ \ z_3=\boxed{ト}+$
$\boxed{ナ}\ i,\ \ \ z_4=\boxed{二}+\boxed{ヌ}\ i $である。
(2)$r \gt 0,\ 0 \leqq θ \lt 2\pi$ を用いて、$1+i=r(\cos θ+i\sin θ)$のように$1+i$を極形式で
表すとき、$r=\sqrt{\boxed{ネ}},\ θ=\frac{\boxed{ノ }}{\boxed{ハ}}\pi$である。
(3)すべての正の整数nに対する$\triangle PA_nA_{n+1}$が互いに相似になる点Pに対応する
複素数は、$\boxed{ヒ}+\boxed{フ }\ i$である。
(4)$|z_n| \gt 1000$となる最小のnは$n=\boxed{へ}$である。
(5)$A_{2022+k}$が実軸上にある最小の正の整数kは$k=\boxed{ホ}$である。

2022上智大学理工学部過去問
この動画を見る 

複素数平面の基本⑫半直線のなす角を考える

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数平面における半直線のなす角を考える
この動画を見る 

福田の数学〜東京慈恵会医科大学2022年医学部第4問〜複素数平面と図形

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#平面上の曲線#複素数平面#方べきの定理と2つの円の関係#図形と方程式#点と直線#2次曲線#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
複素数平面上の点zが原点を中心とする半径1の円周上を動くとき、$w=z+\frac{2}{z}$
で表される点wの描く図形をCとする。Cで囲まれた部分の内部(ただし、
境界線は含まない)に定点$\alpha$をとり、$\alpha$を通る直線lがCと交わる2点を$\beta_1,\beta_2$とする。
(1)$w=u+vi$(u,vは実数)とするとき、uとvの間に成り立つ関係式を求めよ。
(2)点$\alpha$を固定したままlを動かすとき、積$|\beta_1-\alpha|・|\beta_2-\alpha|$が最大となる
ようなlはどのような直線のときか調べよ。

2022東京慈恵会医科大学医学部過去問
この動画を見る 
PAGE TOP