福田の数学〜東京大学2025理系第2問〜はさみうちの原理を利用する極限 - 質問解決D.B.(データベース)

福田の数学〜東京大学2025理系第2問〜はさみうちの原理を利用する極限

問題文全文(内容文):

$\boxed{2}$

(1)$x\gt0$のとき、

不等式$\log x \leqq x - 1$を示せ。

(2)次の極限を求めよ。

$\displaystyle \lim_{n\to\infty} n \displaystyle \int_{1}^{2} \log \left(\dfrac{1+x^{\frac{1}{n}}}{2}\right)dx$

$2025$年東京大学理系過去問題
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

(1)$x\gt0$のとき、

不等式$\log x \leqq x - 1$を示せ。

(2)次の極限を求めよ。

$\displaystyle \lim_{n\to\infty} n \displaystyle \int_{1}^{2} \log \left(\dfrac{1+x^{\frac{1}{n}}}{2}\right)dx$

$2025$年東京大学理系過去問題
投稿日:2025.02.26

<関連動画>

3通りの解法 首都大

アイキャッチ画像
単元: #数A#数Ⅱ#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\log_{10}x+\log_{10}y=\log_{10}(y+2x^2+1)$
整数$(x,y)$を全て求めよ.

2008首都大過去問
この動画を見る 

香川大 3次方程式実数解 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#解と判別式・解と係数の関係#数学(高校生)#香川大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
香川大学過去問題
$f(x)=x^3-3a^2x+a^2-a$について
(1)$f(x)=0$が相異3実根をもつようなaの範囲
(2)(1)のとき3つの解は-2aと2aの間にあることを示せ
この動画を見る 

福田のおもしろ数学348〜不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明
指導講師: 福田次郎
問題文全文(内容文):
$\frac{3}{2} \leqq x \leqq 5$のとき、$2\sqrt{ \mathstrut x+1 }+\sqrt{ \mathstrut 2x-3}+\sqrt{ \mathstrut 15-3x } \lt 2\sqrt{ \mathstrut 19 }$を証明してください。
この動画を見る 

福田の数学〜早稲田大学2023年人間科学部第1問(3)〜指数不等式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)$5^{n+5}$>$11^n$ を満たす自然数$n$は$\boxed{\ \ エ\ \ }$個ある。
ただし、$log_511$=1.49 とする。
この動画を見る 

福田の数学〜大阪大学2022年文系第3問〜6分の1公式の証明と面積の最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#微分法と積分法#恒等式・等式・不等式の証明#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
以下の問いに答えよ。
(1)実数$\alpha,\beta$に対し、

$\int_{\alpha}^{\beta}(x-\alpha)(x-\beta)dx=\frac{(\alpha-\beta)^3}{6}$
が成り立つことを示せ。
(2)a,bを$b \gt a^2$を満たす定数とし、座標平面に点$A(a,b)$をとる。さらに、
点Aを通り、傾きがkの直線をlとし、直線lと放物線$y=x^2$で囲まれた部分の面積を
$S(k)$とする。kが実数全体を動くとき、$S(k)$の最小値を求めよ。

2022大阪大学文系過去問
この動画を見る 
PAGE TOP