文系積分の基本 中央大(文学部) - 質問解決D.B.(データベース)

文系積分の基本 中央大(文学部)

問題文全文(内容文):
2021中央大学過去問題
$y=x(x-1)^2 \cdots$①
$y=kx \cdots$②
①と②は異なる3点で交わり、①と②とで囲まれる2つの部分の面積が等しい
kの値
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#中央大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2021中央大学過去問題
$y=x(x-1)^2 \cdots$①
$y=kx \cdots$②
①と②は異なる3点で交わり、①と②とで囲まれる2つの部分の面積が等しい
kの値
投稿日:2023.06.25

<関連動画>

【数Ⅱ】積分をイチから理解。面積を求めよう【まずは計算方法をマスターする】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$(1)微分するとx^2+4x+3となる関数を求めよ.$
$(2)\displaystyle \int_{1}^{2} (x^2+4x+3)dxを計算せよ. $
$(3)y=x^2-4x+3とx軸で囲われた図形の面積を求めよ.$
$(4)y=x^3-5x^2+6xとx軸で囲われた2つの図形の面積の和を求めよ.$
この動画を見る 

福田の数学〜立教大学2023年経済学部第3問〜放物線と直線で囲まれた図形の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#点と直線#学校別大学入試過去問解説(数学)#面積、体積#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ pを正の実数とする。Oを原点とする座標平面上の放物線C:$y$=$\frac{1}{4}x^2$上の点P$\left(p, \frac{1}{4}p^2\right)$における接線を$l$、Pを通り$x$軸に垂直な直線を$m$とする。また、$m$上の点Q$\left(p, -1\right)$を通り$l$に垂直な直線を$n$とし、$l$と$n$の交点をRとする。さらに、$l$に関してQと対称な点をSとする。このとき、次の問いに答えよ。
(1)$l$の方程式を$p$を用いて表せ。
(2)$n$の方程式およびRの座標をそれぞれ$p$を用いて表せ。
(3)Sの座標を求めよ。
(4)$l$を対象軸として、$l$に関して$m$と対称な直線$m'$の方程式を$p$を用いて表せ。
また、$m'$とCの交点のうちPと異なる点をTとするとき、Tの$x$座標を$p$を用いて表せ。
(5)(4)のTに対して、線分ST、線分OSおよびCで囲まれた部分の面積を$p$を用いて表せ。
この動画を見る 

【理数個別の過去問解説】2016年度京都大学 数学 文系第1問解説

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#京都大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
京都大学(文系)2016年第1問
xy平面内の領域 $x²+y²≦2, |x|≦1$で,曲線$C:y=x³+x²-x $の上側にある部分の面積を求めよ。
この動画を見る 

【短時間でポイントチェック!!】定積分 面積③ 曲線と曲線で囲まれた面積〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$y=x^2-2,y=-x^2-2x+2$で囲まれた部分の面積は?
この動画を見る 

福田のおもしろ数学207〜不等式の証明と図形的な意味

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積・体積・長さ・速度#面積、体積#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a \geqq b \gt 0,n$ は正の整数とする。
$a^n-b^n \leqq \frac{n}{2}(a-b)(a^{n-1}+b^{n-1})$ であることを証明せよ。
この動画を見る 
PAGE TOP