【数Ⅲ】【積分とその応用】次の曲線の長さLを求めよ。ただし、θは媒介変数a,p,qは定数であり、a>0,0<q<π/2 を満たす。 - 質問解決D.B.(データベース)

【数Ⅲ】【積分とその応用】次の曲線の長さLを求めよ。ただし、θは媒介変数a,p,qは定数であり、a>0,0<q<π/2 を満たす。

問題文全文(内容文):
次の曲線の長さLを求めよ。ただし、θは媒介変数a,p,qは定数であり、a>0,0<q<π/2 を満たす。
(1) x=a(cosθ+θsinθ)、y=a(sinθ-θcosθ) (0≦θ≦p)
(2) y=log(cosx) (0≦θ≦p)
チャプター:

0:00 オープニング
0:05 (1)解説
1:41 (2)解説
4:10 エンディング

単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の曲線の長さLを求めよ。ただし、θは媒介変数a,p,qは定数であり、a>0,0<q<π/2 を満たす。
(1) x=a(cosθ+θsinθ)、y=a(sinθ-θcosθ) (0≦θ≦p)
(2) y=log(cosx) (0≦θ≦p)
投稿日:2025.06.12

<関連動画>

大学入試問題#774「基本的な良問」 横浜国立大学(1998) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e-1} \displaystyle \frac{log(log(x+1))}{x+1} dx$

出典:1998年横浜国立大学 入試問題
この動画を見る 

大学入試問題#525「これは根性だすだけか!?」 福島県立医科大学(2017) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#福島県立医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{1+\sqrt{ 3 }} \displaystyle \frac{x^3}{x^2-2x+2} dx$

出典:2017年福島県立医科大学 入試問題
この動画を見る 

#宮崎大学2024#不定積分_20#元高校教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int x^2log$ $x$ $dx$

出典:2024年 宮崎大学
この動画を見る 

この積分は解けませんでした。 By Picmin3daisukiさん

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)
$I=\displaystyle \int_{1}^{2} 2^{2^x} dx$のとき
$\displaystyle \int_{1}^{2} 2^{2x}log(2x)dx$を$I$を用いて表せ

(2)
$I=\displaystyle \int_{1}^{2} (2^{2^x}+2^{(2x+1)}log\ x) dx$を求めよ
この動画を見る 

【数Ⅲ】【積分とその応用】シュワルツの不等式{∫[a→b]f(x)g(x)dx}²≦(∫[a→b]{f(x)}²dx)(∫[a→b]{g(x)}²dx) を利用して、次の不等式が成り立つことを証明せよ

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
シュワルツの不等式
\[
\left\{ \int_a^b f(x)g(x) \, dx \right\}^2 \leq
\left( \int_a^b \{ f(x) \}^2 dx \right)
\left( \int_a^b \{ g(x) \}^2 dx \right) \quad (a < b)
\]

を利用して、\( 0 < a < b, \, h(x) > 0 \) のとき、次の不等式が成り立つことを証明せよ。

(1)
\[
(b - a)^2 < \int_a^b x^2 \, dx \int_a^b \frac{dx}{x^2}
\]

(2)
\[
(b - a)^2 \leq \int_a^b h(x) \, dx \int_a^b \frac{dx}{h(x)}
\]
この動画を見る 
PAGE TOP