【裏ワザ?5分間!】二次関数:鹿児島県公立高等学校~全国入試問題解法【神授業】 - 質問解決D.B.(データベース)

【裏ワザ?5分間!】二次関数:鹿児島県公立高等学校~全国入試問題解法【神授業】

問題文全文(内容文):
入試問題 鹿児島県の公立高等学校

点Pの座標を求めよ。
放物線 $y=\displaystyle \frac{1}{2}x^2$上に
2点$A(x=-2) B(x= 4)$がある。
直線$AB$上に点$P$がある。
直線$OP$が$\triangle OAB$の面積を 2等分している。
※図は動画内参照
単元: #数学(中学生)#2次関数#高校入試過去問(数学)#鹿児島県公立高校入試#鹿児島県公立高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 鹿児島県の公立高等学校

点Pの座標を求めよ。
放物線 $y=\displaystyle \frac{1}{2}x^2$上に
2点$A(x=-2) B(x= 4)$がある。
直線$AB$上に点$P$がある。
直線$OP$が$\triangle OAB$の面積を 2等分している。
※図は動画内参照
投稿日:2021.05.04

<関連動画>

条件不足の連立三元二次方程式

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x,y,z)$の実数解を求めよ.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x + y + z-18 \\
x^2+y^2+z^2=108
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

【数Ⅰ】【2次関数】点の通過 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
次の条件を満たす放物線の方程式を求めよ。
$(1)$ 3点 $(-4,0), \, (-2,0), \, (0,-4)$ を通る。
$(2)$ 点 $(2,0)$ で $x$ 軸に接し、点 $(-2,12)$ を通る。

問題2
$a, \, b, \, c$ の値を入力すると、関数 $y=ax^2+bx+c$ のグラフが表示されるコンピュータソフトがある。ある $a, \, b, \, c$ の値を入力すると、グラフは図のように表示された (図は動画参照)。
$(1)$ $a, \, b, \, c, \, b^2-4ac, \, a+b+c$ の符号をいえ。
$(2)$ この $a, \, b$ の値を変えずに、$c$ の値だけを変化させたとき、変わらないものを次の中からすべて選べ。また、変わらない理由を説明せよ。
① グラフと $x$ 軸の共有点の個数
② グラフの頂点の $x$ 座標の符号
③ グラフの頂点の $y$ 座標の符号
この動画を見る 

【数Ⅰ】【2次関数】2次関数 条件付きの解 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たすように、定数mの値の範囲を定めよ。
 (1) 2次関数 y=x²+mx+1において、yの値が常に正である。
 (2) 放物線 y=x²-2mx+3m-2がy<0の部分を通らない。
 (3) 関数 y=mx²+4x+m-3において、yの値が常に負である。

2次関数 y=x²-mx+m+3のグラフの頂点が第1象限にあるとき、定数mの値の範囲を求めよ。
この動画を見る 

高校入試の頻出問題を手早く解答する動画~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#2次関数#2次方程式と2次不等式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ x^2-8x+2a+1=0 $の解の1つが$ x=3 $であるとき,
aの値を求めよ.また,もう一つの解を求めなさい.

栃木県高校過去問
この動画を見る 

【受験対策】数学-関数11

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①関数$y=-\dfrac{32}{x}$について,
$x$の変域が$-8\leqq x \leqq -2$のとき,$y$の変域を求めよう.

②関数$y=-\dfrac{1}{2}x^2$について,
$x$の変域が$-4 \leqq x\leqq 2$のとき,$y$の変域を求めよう.

③右の図で,点$A(12,18)$,点$B(0,9)$で,点$C$は線分$OA$上の点で,
点$D$は$BC$の延長と$x$軸との交点である.
曲線$\ell$は関数$y=\dfrac{a}{x}(a \gt 0)$の面積と
$\triangle OCD$の面積が等しいとき,
$a$の値を求めよう.

図は動画内参照
この動画を見る 
PAGE TOP