福田の数学〜大阪大学2023年理系第4問〜空間ベクトルと軌跡 - 質問解決D.B.(データベース)

福田の数学〜大阪大学2023年理系第4問〜空間ベクトルと軌跡

問題文全文(内容文):
a,b を$a^2+b^2>1$かつ b≠0 をみたす実数の定数とする。
座標空間のA (a,0,b) と点 P(x, y, 0) をとる。
点O(0, 0, 0) を通り直線APと垂直な平面をαとし、平面と直線AP との交点をQとする。

$(\overrightarrow{ AP }・\overrightarrow{ AO })^2=|\overrightarrow{ AP }|^2|\overrightarrow{ AQ }|^2$が成り立つことを示せ。

$|\overrightarrow{ OQ }|^2=1$ をみたすように点P(x,y,0) が xy平面上を動くとき、点Pの軌跡を求めよ。

2023大阪大学理系過去問
単元: #数Ⅱ#大学入試過去問(数学)#空間ベクトル#図形と方程式#軌跡と領域#空間ベクトル#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
a,b を$a^2+b^2>1$かつ b≠0 をみたす実数の定数とする。
座標空間のA (a,0,b) と点 P(x, y, 0) をとる。
点O(0, 0, 0) を通り直線APと垂直な平面をαとし、平面と直線AP との交点をQとする。

$(\overrightarrow{ AP }・\overrightarrow{ AO })^2=|\overrightarrow{ AP }|^2|\overrightarrow{ AQ }|^2$が成り立つことを示せ。

$|\overrightarrow{ OQ }|^2=1$ をみたすように点P(x,y,0) が xy平面上を動くとき、点Pの軌跡を求めよ。

2023大阪大学理系過去問
投稿日:2023.04.01

<関連動画>

【高校数学】 数B-43 空間ベクトルの内積③

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①4点$A(8,2,-3),B(1,3,2),C(5,1,8),D(3,-3,6)$を頂点とする
四面体$ABCD$がある.$AB\perp BC,AB\perp BD$であることを示し,
四面体$ABCD$の体積を求めよう.

②4点$0(0,0,0),A(4,0,2),B(3,3,3),C(3,0,4)$を頂点とする
四面体$OABC$の体積を求めよう.
この動画を見る 

福田の数学〜筑波大学2023年理系第3問〜球面に内接する四面体

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)#筑波大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 座標空間内の原点Oを中心とする半径$r$の球面S上に4つの頂点がある四面体ABCDが
$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$+$\overrightarrow{OD}$=$\overrightarrow{0}$
を満たしているとする。また三角形ABCの重心をGとする。
(1)$\overrightarrow{OG}$を$\overrightarrow{OD}$を用いて表せ。
(2)$\overrightarrow{OA}$・$\overrightarrow{OB}$+$\overrightarrow{OB}$・$\overrightarrow{OC}$+$\overrightarrow{OC}$・$\overrightarrow{OA}$を$r$を用いて表せ。
(3)点Pが球面S上を動くとき、$\overrightarrow{PA}$・$\overrightarrow{PB}$+$\overrightarrow{PB}$・$\overrightarrow{PC}$+$\overrightarrow{PC}$・$\overrightarrow{PA}$の最大値を$r$を用いて表せ。さらに、最大値をとるときの点Pに対して、|$\overrightarrow{PG}$|を$r$を用いて表せ。

2023筑波大学理系過去問
この動画を見る 

20年5月数学検定1級1次試験(四面体の体積)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#空間ベクトル#空間ベクトル#数学検定#数学検定1級#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
3⃣4点 A(1,-4,1),B(2,2,2),C(2,-6,-3),D(3,-2,-1)とする。
四面体ABCDの体積Vを求めよ。
この動画を見る 

【数B】空間ベクトル:a=(1,0,1) b=(2,-1,-2) c=(-1,2,0)とし、s,t,uは実数とする。d=(6,-5,0)をsa+tb+ucの形に表せ。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
空間ベクトル:a=(1,0,1) b=(2,-1,-2) c=(-1,2,0)とし、s,t,uは実数とする。d=(6,-5,0)をsa+tb+ucの形に表せ。
この動画を見る 

【数学B】平面の方程式(発展)【空間ベクトル】

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数C
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学B】平面の方程式(発展)の解説動画です
-----------------
$A(1,2,2)$を通り、$\vec { n }(3,-2,4)$に垂直な平面の方程式は?
この動画を見る 
PAGE TOP