問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ 座標平面において、原点を極とし、x軸の正の部分を始線とする極座標を考え\hspace{10pt}\\
る。平面上を運動する点Pの極座標(r,\ θ)が、時刻t \geqq 0の関数として、\hspace{39pt}\\
r=1+t,\ \ \ θ=\log(1+t)\hspace{100pt}\\
で与えられるとする。時刻t=0にPが出発してから初めてy軸上に到着するまで\\
にPが描く軌跡をCとする。\hspace{191pt}\\
(1)\ t \gt 0において、Pが初めてy軸上に到着するときのtの値を求めよ。\hspace{30pt}\\
(2)C上の点のx座標の最大値を求めよ。\hspace{147pt}\\
(3)Cの長さを求めよ。\hspace{210pt}\\
(4)Cを座標平面上に図示せよ。\hspace{177pt}\\
(5)Cとx軸とy軸で囲まれた部分の面積を求めよ。\hspace{109pt}\\
\end{eqnarray}
2022上智大学理系過去問
\begin{eqnarray}
{\large\boxed{4}}\ 座標平面において、原点を極とし、x軸の正の部分を始線とする極座標を考え\hspace{10pt}\\
る。平面上を運動する点Pの極座標(r,\ θ)が、時刻t \geqq 0の関数として、\hspace{39pt}\\
r=1+t,\ \ \ θ=\log(1+t)\hspace{100pt}\\
で与えられるとする。時刻t=0にPが出発してから初めてy軸上に到着するまで\\
にPが描く軌跡をCとする。\hspace{191pt}\\
(1)\ t \gt 0において、Pが初めてy軸上に到着するときのtの値を求めよ。\hspace{30pt}\\
(2)C上の点のx座標の最大値を求めよ。\hspace{147pt}\\
(3)Cの長さを求めよ。\hspace{210pt}\\
(4)Cを座標平面上に図示せよ。\hspace{177pt}\\
(5)Cとx軸とy軸で囲まれた部分の面積を求めよ。\hspace{109pt}\\
\end{eqnarray}
2022上智大学理系過去問
単元:
#大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ 座標平面において、原点を極とし、x軸の正の部分を始線とする極座標を考え\hspace{10pt}\\
る。平面上を運動する点Pの極座標(r,\ θ)が、時刻t \geqq 0の関数として、\hspace{39pt}\\
r=1+t,\ \ \ θ=\log(1+t)\hspace{100pt}\\
で与えられるとする。時刻t=0にPが出発してから初めてy軸上に到着するまで\\
にPが描く軌跡をCとする。\hspace{191pt}\\
(1)\ t \gt 0において、Pが初めてy軸上に到着するときのtの値を求めよ。\hspace{30pt}\\
(2)C上の点のx座標の最大値を求めよ。\hspace{147pt}\\
(3)Cの長さを求めよ。\hspace{210pt}\\
(4)Cを座標平面上に図示せよ。\hspace{177pt}\\
(5)Cとx軸とy軸で囲まれた部分の面積を求めよ。\hspace{109pt}\\
\end{eqnarray}
2022上智大学理系過去問
\begin{eqnarray}
{\large\boxed{4}}\ 座標平面において、原点を極とし、x軸の正の部分を始線とする極座標を考え\hspace{10pt}\\
る。平面上を運動する点Pの極座標(r,\ θ)が、時刻t \geqq 0の関数として、\hspace{39pt}\\
r=1+t,\ \ \ θ=\log(1+t)\hspace{100pt}\\
で与えられるとする。時刻t=0にPが出発してから初めてy軸上に到着するまで\\
にPが描く軌跡をCとする。\hspace{191pt}\\
(1)\ t \gt 0において、Pが初めてy軸上に到着するときのtの値を求めよ。\hspace{30pt}\\
(2)C上の点のx座標の最大値を求めよ。\hspace{147pt}\\
(3)Cの長さを求めよ。\hspace{210pt}\\
(4)Cを座標平面上に図示せよ。\hspace{177pt}\\
(5)Cとx軸とy軸で囲まれた部分の面積を求めよ。\hspace{109pt}\\
\end{eqnarray}
2022上智大学理系過去問
投稿日:2022.10.14