福田のわかった数学〜高校1年生075〜場合の数(14)道順(1) - 質問解決D.B.(データベース)

福田のわかった数学〜高校1年生075〜場合の数(14)道順(1)

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 場合の数(14) 道順(1)\hspace{100pt}\\
右の街路図(※動画参照)を点Aから出発して3回だけ曲がってBへ\\
到達する最短経路は何通りあるか。
\end{eqnarray}
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 場合の数(14) 道順(1)\hspace{100pt}\\
右の街路図(※動画参照)を点Aから出発して3回だけ曲がってBへ\\
到達する最短経路は何通りあるか。
\end{eqnarray}
投稿日:2021.11.08

<関連動画>

完全順列(モンモールの問題)【高校数学】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#確率
指導講師: 受験メモ山本
問題文全文(内容文):
完全順列(モンモールの問題)の説明動画です
この動画を見る 

福田のわかった数学〜高校1年生067〜場合の数(6)色々な順列

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 場合の数(6) 並べ方色々\\
さいころを4回投げたとき、出た目を順にa,b,c,dとする。\\
次のような目の出方は何通りあるか。\\
(1)全て異なる目が出る\\
(2)a \lt b \lt c \lt d\\
(3)a \leqq b \leqq c \leqq d
\end{eqnarray}
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試理系第4問〜サイコロの目で決まる複素数の値に関する確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#複素数平面#確率#複素数平面#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$i$を虚数単位とし、$z=\frac{1}{2}+\frac{\sqrt3}{2}\ i\$とおく。
さいころを3回ふり、出た目を順に$a,\ b,\ c$とする。
このとき、積$\ abc$が3の倍数となる確率は$\frac{\boxed{アイ}}{\boxed{ウエ}}$である。
また、$z^{abc}=-1$となる確率は$\frac{\boxed{オカ}}{\boxed{キクケ}}$であり、
$z^{abc}=1$となる確率は$\frac{\boxed{コサシ}}{\boxed{スセソ}}$である。

2022明治大学全統理系過去問
この動画を見る 

福田の数学〜筑波大学2022年理系第2問〜確率漸化式と常用対数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数B
指導講師: 福田次郎
問題文全文(内容文):
整数$\ a_1,\ a_2,\ a_3,\ \ldots$を、さいころをくり返し投げることにより、以下のように
定めていく。まず$a_1=1$とする。そして、正の整数$n$に対し、$a_{n+1}$の値を、n回目に
出たさいころの目に応じて、次の規則で定める。
$(\ 規則\ )$ n回目に出た目が1,2,3,4なら$a_{n+1}=a_n、5,6$なら$a_{n+1}=-a_n$
例えば、さいころを3回投げ、その出た目が順に5,3,6であったとすると、
$a_1=1,a_2=-1,a_3=-1,a_4=1$となる。
$a_n=1$となる確率を$p_n$とする。ただし、$p_1=1$とし、さいころのどの目も、
出る確率は$\frac{1}{6}$であるとする。
(1)$p_2,p_3$を求めよ。
(2)$p_{n+1}$を$p_n$を用いて表せ。
(3)$p_n \leqq 0.5000005$を満たす最小の正の整数nを求めよ。
ただし、$0.47 \lt \log_{10}3 \lt 0.48$であることを用いてよい。

2022筑波大学理系過去問
この動画を見る 

【高校数学】第三の組合わせの性質の証明 1-10.5【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
第三の組合わせの性質の証明についての説明動画です
この動画を見る 
PAGE TOP