問題文全文(内容文):
$f(x)=|2x^2-10x+9|$とおく。
(1)$y=f(x)$のグラフをかけ。
(2)$y=f(x)$のグラフと直線$y=ax+1$がちょうど4個の共通点をもつような、実数の定数$a$の値の範囲を求めよ。
$f(x)=|2x^2-10x+9|$とおく。
(1)$y=f(x)$のグラフをかけ。
(2)$y=f(x)$のグラフと直線$y=ax+1$がちょうど4個の共通点をもつような、実数の定数$a$の値の範囲を求めよ。
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#法政大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$f(x)=|2x^2-10x+9|$とおく。
(1)$y=f(x)$のグラフをかけ。
(2)$y=f(x)$のグラフと直線$y=ax+1$がちょうど4個の共通点をもつような、実数の定数$a$の値の範囲を求めよ。
$f(x)=|2x^2-10x+9|$とおく。
(1)$y=f(x)$のグラフをかけ。
(2)$y=f(x)$のグラフと直線$y=ax+1$がちょうど4個の共通点をもつような、実数の定数$a$の値の範囲を求めよ。
投稿日:2021.05.02