【高校数学】 数Ⅱ-87 一般角と弧度法 - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-87 一般角と弧度法

問題文全文(内容文):
◎次の角の憧憬を図示しよう。

①70°

②-150°

③400°

④-635°

◎次の角を、度数は弧度に、弧度は度数に直そう。

⑤30°

⑥135°

⑦210°

⑧$\displaystyle \frac{π}{3}$

⑨$\displaystyle \frac{2}{15}π$

⑩$π$
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の角の憧憬を図示しよう。

①70°

②-150°

③400°

④-635°

◎次の角を、度数は弧度に、弧度は度数に直そう。

⑤30°

⑥135°

⑦210°

⑧$\displaystyle \frac{π}{3}$

⑨$\displaystyle \frac{2}{15}π$

⑩$π$
投稿日:2015.07.25

<関連動画>

【わかりやすく】三角方程式(2次方程式を利用)【数学Ⅰ三角比】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$のとき、次の等式を満たす$\theta$を求めよ。
$2\sin^2\theta-3\cos\theta=0$
この動画を見る 

福田のわかった数学〜高校2年生062〜三角関数(1)三角関数のグラフ

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(1) 三角関数のグラフ
下の図は$y=a\sin(bx-c)$のグラフである。
$a,b,c,d$の値を求めよ。ただし、$a \gt 0,\ b \gt 0,\ 0 \lt c \lt 2\pi$
とする。(※図は動画参照)
この動画を見る 

18神奈川県採用試験(数学:複素数)

アイキャッチ画像
単元: #数Ⅱ#複素数平面#三角関数#三角関数とグラフ#複素数平面#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$Z=\frac{\sqrt 3 - i}{\sqrt 2 + \sqrt 2 i } , Z^{50}$を求めよ。
この動画を見る 

福田の数学〜上智大学2023年TEAP利用型文系第1問〜三角関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 関数
$y$=2($\sin^3x$+$\cos^3x$)+8$\sin x\cos x$+5 (0≦$x$<2$\pi$)
を考える。$\sin x$+$\cos x$=$t$ とおく。
(1)$y$を$t$の式で表すと
$y$=$\boxed{\ \ ア\ \ }t^3$+$\boxed{\ \ イ\ \ }t^2$+$\boxed{\ \ ウ\ \ }t$+$\boxed{\ \ エ\ \ }$
である。
(2)関数$y$は$t$=$\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}$において最小値$\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}$をとる。
(3)関数$y$は$x$=$\frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コ\ \ }}\pi$において最大値$\boxed{\ \ サ\ \ }$+$\sqrt{\boxed{\ \ コ\ \ }}$をとる。
この動画を見る 

大学入試問題#137 秋田大学(2020) 三角関数

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#秋田大学
指導講師: ますただ
問題文全文(内容文):
$y=\displaystyle \frac{6+4\sin\theta+4\cos\theta+\sin2\theta}{2+\sin\theta+\cos\theta}$の最小値を求めよ。

出典:2020年秋田大学 入試問題
この動画を見る 
PAGE TOP