福田の数学〜東北大学2024年理系第1問〜放物線と接線と面積 - 質問解決D.B.(データベース)

福田の数学〜東北大学2024年理系第1問〜放物線と接線と面積

問題文全文(内容文):
$\Large{\boxed{1}}$ $a$を正の実数とし、$f(x)$=$x^2$-$2ax$+$4a^2$ とする。Oを原点とする$xy$平面上の放物線C:$y$=$f(x)$の頂点をAとする。直線OAとCの交点のうちAと異なるものをP($p$,$f(p)$)とし、OからCへ引いた接線の接点をQ($q$,$f(q)$)とする。ただし、$q$>0 とする。
(1)$p$,$q$の値を$a$を用いて表せ。また、$p$>$q$であることを示せ。
(2)放物線Cの$q$≦$x$≦$p$の部分、線分OP、および線分OQで囲まれた図形の面積をSとおく。Sを$a$を用いて表せ。
(3)(2)のSに対し、S=$\frac{2}{3}$ となるときの$a$の値を求めよ。
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ $a$を正の実数とし、$f(x)$=$x^2$-$2ax$+$4a^2$ とする。Oを原点とする$xy$平面上の放物線C:$y$=$f(x)$の頂点をAとする。直線OAとCの交点のうちAと異なるものをP($p$,$f(p)$)とし、OからCへ引いた接線の接点をQ($q$,$f(q)$)とする。ただし、$q$>0 とする。
(1)$p$,$q$の値を$a$を用いて表せ。また、$p$>$q$であることを示せ。
(2)放物線Cの$q$≦$x$≦$p$の部分、線分OP、および線分OQで囲まれた図形の面積をSとおく。Sを$a$を用いて表せ。
(3)(2)のSに対し、S=$\frac{2}{3}$ となるときの$a$の値を求めよ。
投稿日:2024.04.17

<関連動画>

名古屋大 微分・積分 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#面積、体積
指導講師: 鈴木貫太郎
問題文全文(内容文):
名古屋大学過去問題
$y=x^2(x+1)とy=k^2(x+1)$とで囲まれる面積が最小となるkの値を求めよ。
$(0 \leqq k \leqq 1)$
この動画を見る 

【積分】積分がなぜ面積を求められるのかについて解説しました!【数学III】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
積分の原理を解説します。
この動画を見る 

福田の数学〜早稲田大学2022年商学部第1問(4)〜3次関数のグラフの回転と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(4)3次関数f(x)は、x=1で極大値5をとり、x=2で極小値4をとる。
関数$f(x)(x \geqq 0)$のグラフを、原点を中心に時計回りに
θ回転して得られる図形を$C(θ)$とする。
ただし、$0 \lt θ \lt \pi$とする。$C(θ)$と$x$軸の共有点が相異なる3点であるとき、
それらを$x$座標の小さい順に$P_θ,Q_θ,R_θ$とする。線分$Q_θR_θ$と$C(θ)$で
囲まれた部分の面積が$\frac{81}{32}$であるとき、$Q_θ$の$x$座標は$\boxed{\ \ エ\ \ }$である。

2022早稲田大学商学部過去問
この動画を見る 

公式を使う?使わない?富山大 積分基本問題

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)#富山大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023富山大学
a>0
$f(x)=x^3-6x$,$g(x)=-3x+a$
f(x)とg(x)は2つの共有点をもつ
①aの値
②f(x)とg(x)とで囲まれる面積
この動画を見る 

福田の1.5倍速演習〜合格する重要問題012〜京都大学2015年度文系数学第1問〜折れ線と交わらない条件

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#2次関数#一次不等式(不等式・絶対値のある方程式・不等式)#2次関数とグラフ#図形と方程式#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
直線$y=px+q$が、$y=x^2-x$のグラフとは交わるが、$y=|x|+|x-1|+1$
のグラフとは交わらないような(p,q)の範囲を図示し、その面積を求めよ。

2015京都大学文系過去問
この動画を見る 
PAGE TOP