問題文全文(内容文):
順天堂大学過去問題
1⃣
$α^4+α^3+α^2+α+1=0$
$α^6(α^7+1)(α+1)$の値
2⃣
$\sqrt3 + i +z$の絶対値を最大にする複素数Z
ただし|Z|=1
順天堂大学過去問題
1⃣
$α^4+α^3+α^2+α+1=0$
$α^6(α^7+1)(α+1)$の値
2⃣
$\sqrt3 + i +z$の絶対値を最大にする複素数Z
ただし|Z|=1
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#順天堂大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
順天堂大学過去問題
1⃣
$α^4+α^3+α^2+α+1=0$
$α^6(α^7+1)(α+1)$の値
2⃣
$\sqrt3 + i +z$の絶対値を最大にする複素数Z
ただし|Z|=1
順天堂大学過去問題
1⃣
$α^4+α^3+α^2+α+1=0$
$α^6(α^7+1)(α+1)$の値
2⃣
$\sqrt3 + i +z$の絶対値を最大にする複素数Z
ただし|Z|=1
投稿日:2018.10.19