中2数学「連立方程式(加減法)」【毎日配信】 - 質問解決D.B.(データベース)

中2数学「連立方程式(加減法)」【毎日配信】

問題文全文(内容文):
中2~連立方程式(加減法)~

例題次の連立方程式を解きなさい。

(1)
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x-3y=11 \\
2x-3y=7
\end{array}
\right.
\end{eqnarray}$

(2)
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x-5y=7 \\
-2x+3y=-1
\end{array}
\right.
\end{eqnarray}$

(3)
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x+3y-16 \\
3x-4y=7
\end{array}
\right.
\end{eqnarray}$

(4)
$\begin{eqnarray}
\left\{
\begin{array}{l}
5x-6y=-8 \\
9x-4y=6
\end{array}
\right.
\end{eqnarray}$
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~連立方程式(加減法)~

例題次の連立方程式を解きなさい。

(1)
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x-3y=11 \\
2x-3y=7
\end{array}
\right.
\end{eqnarray}$

(2)
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x-5y=7 \\
-2x+3y=-1
\end{array}
\right.
\end{eqnarray}$

(3)
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x+3y-16 \\
3x-4y=7
\end{array}
\right.
\end{eqnarray}$

(4)
$\begin{eqnarray}
\left\{
\begin{array}{l}
5x-6y=-8 \\
9x-4y=6
\end{array}
\right.
\end{eqnarray}$
投稿日:2022.04.15

<関連動画>

【高校受験対策】数学-関数19

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図で,直線$\ell$は関数$f =-\dfrac{1}{2}x+12$グラフで,
点$A$は直線$\ell$と$x$軸との交点である.
$x$軸上に点$B(9,0)$を,$y$軸上に点$C(0,6)$をそれぞれとる.
また,直線上に点$D(12,6)$をとると,
$△ABD$は$\angle ADB = 90°$の直角三角形になる.
これについて,次の各問いに答えなさい.

①点$A$の座標を求めなさい.

②$△ABD$の面積を求めなさい.

③直線$\ell$に点$P$をとる.
$BP+PC$の長さが最小になるときの点$P$の座標を求めなさい.

図は動画内参照
この動画を見る 

【中学数学】方程式の演習問題~早稲田の過去問~【高校受験】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#早稲田大学高等学院
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
黒、白2種類の石がいくつかずつある。
はじめ、白石の個数が全体の個数にしめる割合は40%であった。
白石の個数を14個減らしたところ、白石の個数が全体の個数にしめる割合は25%になった。
はじめにあった黒石、白石の個数をそれぞれ求めよ。
この動画を見る 

すべての辺の長さが等しい正四角錐(高校入試数学)

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#空間図形#三角形と四角形
指導講師: 数学を数楽に
問題文全文(内容文):
動画内の図の$\rm{BM}$の長さを求めよ。
この動画を見る 

3通りで解説  天理

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
CH=?
*図は動画内参照

天理高校
この動画を見る 

【分かっていても手間はかかる】連立方程式:東大寺学園高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
x,yについての連立方程式
$ \begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{3}{3x+4y}-\dfrac{4}{4x-3y}=10 \\
\dfrac{4}{3x+4y}+\dfrac{3}{4x-3y}=5
\end{array}
\right.
\end{eqnarray}$
を解け.

東大寺学園高校過去問
この動画を見る 
PAGE TOP