福井大(医)整式 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

福井大(医)整式 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
'08福井大学過去問題
$f(x)=x^2+ax+b,g(x)=x^2+x+1$
$f(x^2)$を$g(x)$で割ったときの余りと、$f(x^4)$を$g(x)$で割ったときの余りが一致し、$f(x^3)$は$g(x)$で割り切れる。
(1)a,bを求めよ。
(2)$f(x^k)$を$g(x)$で割ったときの余り。k自然数
(3)$g(x)$を$f(x)$で割った余りを$C_kx+d_k$
$\displaystyle\sum_{k=1}^nd_k$
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)#福井大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'08福井大学過去問題
$f(x)=x^2+ax+b,g(x)=x^2+x+1$
$f(x^2)$を$g(x)$で割ったときの余りと、$f(x^4)$を$g(x)$で割ったときの余りが一致し、$f(x^3)$は$g(x)$で割り切れる。
(1)a,bを求めよ。
(2)$f(x^k)$を$g(x)$で割ったときの余り。k自然数
(3)$g(x)$を$f(x)$で割った余りを$C_kx+d_k$
$\displaystyle\sum_{k=1}^nd_k$
投稿日:2018.07.08

<関連動画>

tan7. 5°の華麗な求め方

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$
\begin{eqnarray}
\frac{1}{\tan\frac{\pi}{24}}の値

\end{eqnarray}
$
この動画を見る 

「三角比sin(90°–θ)など」【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の値を求めよ。
$\sin7^{ \circ }-\cos83^{ \circ }-\sin97^{ \circ }-\cos173^{ \circ }$
この動画を見る 

福田のおもしろ数学178〜ある等式を満たす100個の変数のうちのひとつの変数の最大値

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle\frac{a_1^2+a_2^2+...+a_{100}^2}{a_1+a_2+...+a_{100}}$=100 を満たす実数$a_1$の最大値を求めてください。
この動画を見る 

連立方程式

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
(1+x)(1+y)(x+y)=2024 \\
x^3+y^3=1927
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

□=❓

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt {▢ \frac{2}{3}} = ▢\sqrt {\frac{2}{3}}$
▢=?
*▢は同じ自然数
この動画を見る 
PAGE TOP