【数Ⅱ】微分法と積分法:定積分:積分を含む関数 PRIMEⅡ 531(1) - 質問解決D.B.(データベース)

【数Ⅱ】微分法と積分法:定積分:積分を含む関数 PRIMEⅡ 531(1)

問題文全文(内容文):
次の等式を満たす関数f(x)を求めよ。

$f(x)=6x-\int_{0}^{3}f(t)dt$

チャプター:

:00 解説開始!

単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の等式を満たす関数f(x)を求めよ。

$f(x)=6x-\int_{0}^{3}f(t)dt$

投稿日:2023.11.11

<関連動画>

【短時間でポイントチェック!!】定積分 面積② 直線と曲線で囲まれた面積〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$y=x^2-x-4,y=x-1$で囲まれた部分の面積
この動画を見る 

鳴門教育大 積分 面積6分の1公式証明

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=x^2-4x+2a^3$,y=-x^2+2a^2(0\leqq a\leqq 1)$
囲まれた面積の最大値を求めよ.

鳴門教育大過去問
この動画を見る 

大学入試問題#776「シグマの気持ち」 横浜国立大学(1996)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to +\infty } \displaystyle \frac{1}{n}log\{\displaystyle \frac{n}{n}・\displaystyle \frac{n+2}{n}・\displaystyle \frac{n+4}{n}・・・\displaystyle \frac{n+2(n-1)}{n}\}$

出典:1996年横浜国立大学
この動画を見る 

#電気通信大学2015#定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} x^2(1-x)^9 dx$

出典:2015年電気通信大学
この動画を見る 

福田の数学〜慶應義塾大学2022年経済学部第6問〜定積分で表された関数と面積の2等分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{6}}$関数$F(x)=\frac{1}{2}+\int_0^{x+1}(|t-1|-1)dt$に対し、
$y=F(x)$で定まる曲線をCとする。
(1)$F(x)$を求めよ。
(2)$C$と$x$軸の共有点のうち、x座標が最小の点をP、最大の点をQ
とする。PにおけるCの接線をlとするとき、Cとlで囲まれた図形の面積Sを求めよ。
また、Qを通る直線mがSを2等分するとき、lとmの交点Rの座標を求めよ。

2022慶應義塾大学経済学部過去問
この動画を見る 
PAGE TOP