#上智大学(2005) #Shorts - 質問解決D.B.(データベース)

#上智大学(2005) #Shorts

問題文全文(内容文):
$f(x)=x^2+x+2\displaystyle \int_{0}^{1} f(t) dt$を満たす関数$f(x)$を求めよ

出典:2005年上智大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(x)=x^2+x+2\displaystyle \int_{0}^{1} f(t) dt$を満たす関数$f(x)$を求めよ

出典:2005年上智大学
投稿日:2024.05.25

<関連動画>

【高校数学】滋賀医科大学2023年の積分の問題をその場で解説しながら解いてみた!毎日積分80日目~47都道府県制覇への道~【㉓滋賀】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#滋賀医科大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【滋賀医科大学 2023】
実数全体を定義域とする微分可能な関数$f(x)$は、常に$f(x)>0$であり、等式
$\displaystyle f(x)=1+\int_0^x e^t(1+t)f(t)dt$
を満たしている。
(1) $f(0)$を求めよ。
(2) $logf(x)$の導関数$(logf(x))’$を求めよ。
(3) 関数$f(x)$を求めよ。
(4) 方程式$f(x)=\frac{1}{\sqrt{2}}$を解け。
この動画を見る 

大学入試問題#588「なんか似た問題解いたことある。」 横浜市立大学(2020) #方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#横浜市立大学
指導講師: ますただ
問題文全文(内容文):
$x^4-8x^3+17x^2-8x+1=0$

出典:2020年横浜市立大学医学部 入試問題
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試12AB第1問(3)〜隣り合わない重複順列

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(3)4個の文字$A,B,C,D$から重複を許して5個取り出して1列に並べる。
このとき、AとBが隣り合わず、CとDが隣り合わないような並べ方は$\boxed{\ \ シスセ\ \ }$通りある。

2022明治大学全統過去問
この動画を見る 

福田の数学〜大阪大学2025理系第4問〜不等式の証明と関数の極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

次の問いに答えよ。

(1)$t\gt 0$のとき

$-\dfrac{1}{t}\lt \displaystyle \int_{t}^{2t} \dfrac{\sin x}{x^2}dx \lt \dfrac{1}{t}$

が成り立つことを示せ。

(2)$\displaystyle \lim_{t\to\infty}\displaystyle \dfrac{\cos x}{x}dx=0$を示せ。

(3)$f(x)=\sin\left(\dfrac{3x}{2}\right)\sin\left(\dfrac{x}{2}\right)$おく。

$\displaystyle \lim_{t\to\infty}\displaystyle \int_{1}^{t} \dfrac{f(x)}{x}dx=\dfrac{1}{2} \displaystyle \int_{1}^{2} \dfrac{\cos x}{x} dx$

を示せ。

$2025$年大阪大学理系過去問題
この動画を見る 

京大伝説10選:絶対に京大に行きたくなる話~機動隊が突撃する?!【篠原好】

アイキャッチ画像
単元: #その他#京都大学#京都大学#京都大学#その他#京都大学
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
機動隊が突撃する?!
「京大伝説10選」についてお話しています。
この動画を見る 
PAGE TOP