数学「大学入試良問集」【17−7 極限値が収束する条件】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【17−7 極限値が収束する条件】を宇宙一わかりやすく

問題文全文(内容文):
$\displaystyle \lim_{ x \to \frac{\pi}{3} }\displaystyle \frac{a\ \sin\ x+b\ \cos\ x}{x-\frac{\pi}{3}}=5(a,b$は定数$)$のとき、$a$と$b$の値を求めよ。
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#愛知工業大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\displaystyle \lim_{ x \to \frac{\pi}{3} }\displaystyle \frac{a\ \sin\ x+b\ \cos\ x}{x-\frac{\pi}{3}}=5(a,b$は定数$)$のとき、$a$と$b$の値を求めよ。
投稿日:2021.06.24

<関連動画>

自然数無限に足すとマイナスになるみたい...

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
自然数は無限に足すとマイナスになる。
解説動画です
この動画を見る 

【誘導あり:概要欄】大学入試問題#256 神戸大学2012 #極限 #はさみうちの定理

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$2 \leqq n$自然数
$S_n=\displaystyle \sum_{k=1}^{n^3-1}\displaystyle \frac{1}{k\ log\ k}$

(1)
$2 \leqq k$:自然数
$\displaystyle \frac{1}{(k+1)log(k+1)} \lt \displaystyle \int_{k}^{k+1}\displaystyle \frac{dx}{x\ log\ x} \lt \displaystyle \frac{1}{k\ log\ k}$

(2)
$\displaystyle \lim_{ n \to \infty }S_n$を求めよ。

出典:2012年神戸大学 入試問題
この動画を見る 

数3を使わずに分数関数の最小値を求める

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x$は正の実数である.
$\dfrac{x^2+x+196}{x+1}$は$x=\Box$のとき,最小値$\Box$となる.
$\Box$を求めよ.
この動画を見る 

福田の数学〜曲線の長さの計算は大丈夫?〜明治大学2023年理工学部第2問〜曲線の長さと極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$f(x)=\dfrac{1}{8}x^2-logx(x \gt0)$とし、座標平面上の曲線y=f(x)をCとする。ただし、logxは自然対数を表す。関数f(x)は$x=\fbox{あ}$で最小値をとる。曲線C上の点A(1,f(1))における曲線Cの接線をlとすると、lの方程式は$y=\fbox{い}$である。
曲線Cと接線lおよび直線x=2で囲まれた図形の面積は$\fbox{う}$である。また、点$(t,f(t))(t \lt1)$をPとし、点Aから点Pまでの曲線Cの長さをL(t)とすると$L(2)=\fbox{え}$である。また、$\displaystyle \lim_{ t \to 1+0 } \dfrac{L(t)}{t-1}= \fbox{お}$である。

2023明治大学理工学部過去問
この動画を見る 

東工大 極限値 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
1982東京工業大学過去問題
n自然数
半径$\frac{1}{n}$の円を重ならないように半径1の円に外接させる。このとき外接する円の最大個数を$a_n$とする。
$\displaystyle \lim_{n \to \infty} \frac{a_n}{n}$を求めよ。
この動画を見る 
PAGE TOP