【高校数学】 数Ⅱ-142 常用対数② - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-142 常用対数②

問題文全文(内容文):
$\log_{10}2=0.3010,\log_{10}3=0.4771$とする。

①$2^{50}$は何桁の整数か求めよう。

②$(\displaystyle \frac{1}{3})^{30}$を小数で表したとき、小数第何位に初めて0でない数字が現れるか求めよう。
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\log_{10}2=0.3010,\log_{10}3=0.4771$とする。

①$2^{50}$は何桁の整数か求めよう。

②$(\displaystyle \frac{1}{3})^{30}$を小数で表したとき、小数第何位に初めて0でない数字が現れるか求めよう。
投稿日:2015.10.01

<関連動画>

【短時間でポイントチェック!!】常用対数を用いた桁数の求め方〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$\log_{ 10 } 2$=0.3010,$\log_{ 10 } 3$=0.4771とする。
$2^{50}$は何桁の整数か?
この動画を見る 

福田の数学〜明治大学2024全学部統一IⅡAB第1問(2)〜対数不等式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$x$についての不等式$\left( \log_{ 3 } \frac{x}{8}\right)\cdot\left( \log_{ 2 }8x\right)\leqq \left( \log_{ 3 }2\right)\cdot\left( \log_{ 2 } \frac{8}{x}\right)$を解くと、$\frac{\fbox{ ク }}{\fbox{ ケコ }}\leqq x \leqq \fbox{ サ }$である。
この動画を見る 

対数の基本性質

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを簡単にせよ.$a,b,c$を正とし,$a,b,c \neq 1$である.
$\dfrac{1}{1+\log_a bc}+\dfrac{1}{1+\log_b ca}+\dfrac{1}{1+\log_c ab}$
この動画を見る 

大阪大 対数方程式 恒等式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#指数関数と対数関数#恒等式・等式・不等式の証明#対数関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数の組$(x,y,z)$で、どのような整数$l,m,n$に対しても$l・10^{x-y}-nx+l・10^{y-z}+m・10^{x-z}=$
13l+36m+ny$が成り立つものを求めよ

出典:2011年大阪大学 過去問
この動画を見る 

漸化式・対数の利用の融合問題 福井大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a_1=1,a_{n+1}=\dfrac{a_n}{a_n+3},a_{11}$は小数点以下0でない数が初めて表れるのは小数第何位?

福井大過去問
この動画を見る 
PAGE TOP