【誘導は概要欄のリンクから】大学入試問題#294 東北大学工学部AO II期(2021) #整数問題 - 質問解決D.B.(データベース)

【誘導は概要欄のリンクから】大学入試問題#294 東北大学工学部AO II期(2021) #整数問題

問題文全文(内容文):
等差数列
$a,a+1,a+2,・・・,a+n$の和が1000となるような自然数の組$(a,n)$をすべて求めよ。

出典:2021年東北大学工学部AOⅡ期 入試問題
チャプター:

00:00 問題提示
00:24 本編スタート
10:06 作成した解答①
10:19 作成した解答②
10:31 作成した解答③
10:42 エンディング(視聴者の兄いえてぃさんが提供してくれました。)

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
等差数列
$a,a+1,a+2,・・・,a+n$の和が1000となるような自然数の組$(a,n)$をすべて求めよ。

出典:2021年東北大学工学部AOⅡ期 入試問題
投稿日:2022.08.29

<関連動画>

福田の数学〜浜松医科大学2023年医学部第1問〜高次方程式の解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の条件を満たす係数が整数の多項式 $f(x)$ を考える。
(I) $f(0)$ は4で割り切れない。
(II) 方程式$f(x) = 0 $は$ x = 1 $で重解をもつ。
(III) 方程式$f(x)=x(x-1)(x-2)$ は異なる整数解をもつ。
このとき、$f(4)$ を36で割ったときの余りを求めよ。

2023浜松医科大学医過去問
この動画を見る 

鳥取大 ただの因数分解

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2x^3-5x^2-5x+4$を因数分解しなさい

鳥取大過去問
この動画を見る 

福田の数学〜北海道大学2023年理系第4問〜絶対値の和の最小となる確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ nを2以上の自然数とする。1個のさいころをn回投げて出た目の数を順に$a_1$, $a_2$, ... ,$a_n$とし、
$K_n$=|1-$a_1$|+|$a_1$-$a_2$|+...+|$a_{n-1}$-$a_n$|+|$a_n$-6|
とおく。また$K_n$のとりうる値の最小値を$q_n$とする。
(1)$K_3$=5となる確率を求めよ。
(2)$q_n$を求めよ。また、$K_n$=$q_n$となるための$a_1$, $a_2$,...,$a_n$に関する必要十分条件を求めよ。
(3)nを4以上の自然数とする。$L_n$=$K_n$+|$a_4$-4|とおき、$L_n$のとりうる値の最小値を$r_n$とする。$L_n$=$r_n$となる確率$p_n$を求めよ。

2023北海道大学理系過去問
この動画を見る 

#山梨大学2013#定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#山梨大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-10}^{0} \displaystyle \frac{1}{(x+11)(x+12)}$ $dx$

出典:2013年山梨大学
この動画を見る 

#芝浦工業大学(2023) #定積分 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#芝浦工業大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} t\sin \ t \ \cos\ t\ dt$

出典:2023年芝浦工業大学
この動画を見る 
PAGE TOP