大学入試問題数学#31 名古屋工業大学 改 (2020) 定積分と極限 - 質問解決D.B.(データベース)

大学入試問題数学#31 名古屋工業大学 改 (2020) 定積分と極限

問題文全文(内容文):
$\displaystyle \lim_{ R \to \infty }\displaystyle \int_{0}^{R}e^{-\sqrt{ x }}dx$を求めよ。
$\displaystyle \lim_{ x \to \infty }xe^{-x}=0$は用いてよい。

出典:2020年名古屋工業大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋工業大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ R \to \infty }\displaystyle \int_{0}^{R}e^{-\sqrt{ x }}dx$を求めよ。
$\displaystyle \lim_{ x \to \infty }xe^{-x}=0$は用いてよい。

出典:2020年名古屋工業大学 入試問題
投稿日:2021.10.10

<関連動画>

福田の数学〜東京慈恵会医科大学2025医学部第3問〜双曲線が表す領域と素数の性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#平面上の曲線#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

自然数$p$は$2$以上の定数とする。

$xy$平面上で不等式$x^2-py^2 \geqq -1$の表す領域

を$D$とする。

自然数$r$は、円$(x-p)^2+y^2=r$が領域$D$に

含まれるような最大のものとするとき、

次の問いに答えよ。

(1)$r$を$p$を用いて表せ。

(2) (1)のもとで、関係式$(x-p)^2+y^2=r$をみたす

互いに異なる素数の組$(x,y,p)$のうち、

$p$の値が最小となるものを求めよ。

$2025$年東京慈恵会医科大学医学部過去問題
この動画を見る 

福田の数学〜青山学院大学2021年理工学部第5問〜絶対値の付いた関数と面積の最大最小

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$tを$0 \leqq t \leqq \frac{\pi}{2}$を満たす定数とする。関数
$f(x)=|\sin x-\sin t|  (0 \leqq x \leqq \pi)$
について、以下の問いに答えよ。
(1)$t=\frac{\pi}{6}$のとき$y=f(x) (0 \leqq x \leqq \pi)$のグラフを描け。

(2)$y=f(x) (0 \leqq x \leqq \pi)$のグラフとx軸、y軸および直線$x=\pi$
で囲まれた図形の面積をSとする。Sをtを用いて表せ。

(3)tが$\leqq t \leqq \frac{\pi}{2}$の範囲を動くときのSの最大値と最小値を求めよ。

2021青山学院大学理工学部過去問
この動画を見る 

大学入試問題#724「教科書の例題」 千葉大学(2023) 積分方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(x)=x^2+\displaystyle \int_{-1}^{2} (xf(t)-t)dt$を満たす関数$f(x)$を求めよ

出典:2023年千葉大学 入試問題
この動画を見る 

【理数個別の過去問解説】2021年度東京大学 数学 理科第1問(1)/文科第3問(1)解説

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
東京大学2021年度理科大問1(文科大問3)(1)2曲線の共有点の存在範囲はx軸上で考えよ
a,bを実数とする。座標平面上の放物線
C:y=x²+ax+b
は放物線y=-x²と2つの共有点を持ち、一方の共有点のx座標は-1<x<0を満たし、他方の共有点のx座標は0<x<1を満たす。

(1)点(a,b)のとりうる範囲を座標平面上に図示せよ。
(2)放物線Cの通りうる範囲を座標平面上に図示せよ。
この動画を見る 

福田の数学〜早稲田大学2025教育学部第4問〜共有点の個数と面積計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

$k$は実数とする。

曲線$C:y=(x^3-x+2)e^{-x}$と直線$y=k$との

共有点の偶数を$f(k)$で表す。次の問いに答えよ。

ただし、必要ならば自然数$n$に対し

$\displaystyle \lim_{x\to\infty} x^n e^{-x}=0$が成り立つことは

説明なしに用いてもよい。

(1)$k$が実数全体を動くとき、

$f(k)$の最大値の最小値を求めよ。

(2)$f(k)=2$を満たす$k$の値の範囲を求めよ。

(3)$\alpha$を正の実数とする。

曲線$C,x$軸,$y$軸,および直線$x=\alpha$で囲まれる

部分の面積を$\alpha$を用いて表せ。

$2025$年早稲田大学教育学部過去問題
この動画を見る 
PAGE TOP