関西医科大 三項間漸化式 - 質問解決D.B.(データベース)

関西医科大 三項間漸化式

問題文全文(内容文):
$ a_1=0,a_2=1$
$a_{n+2}=10a_{n+1}+51a_{n}$とする。

①一般項$a_n$を求めよ。
②$a_n$を10で割ったあまりを$b_n$とする。
$\displaystyle \sum_{k=1}^{2m} b_k$を求めよ。

関西医科大過去問
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a_1=0,a_2=1$
$a_{n+2}=10a_{n+1}+51a_{n}$とする。

①一般項$a_n$を求めよ。
②$a_n$を10で割ったあまりを$b_n$とする。
$\displaystyle \sum_{k=1}^{2m} b_k$を求めよ。

関西医科大過去問
投稿日:2023.03.26

<関連動画>

福田の数学〜中央大学2024経済学部第3問〜数列と漸化式

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
3.
座標平面上に曲線 $C$ : $y = x ^ 2 - 2x$ がある。$C$上の点$P_n (a_n, a_n²-2a_n) \ ( n = 1 , 2, 3, ・・・) $について、 $a_{1} = 4$ とし、 $a_{n + 1}$ は$C$の$P_n$における接線と$x$軸との交点の$x$座標であるとする。このとき、$a_n$は$1$より大きいことが分かっている。以下の設問に答えよ。

(1) $a_{n+ 1}$を$a_n$を用いて表せ。
(2) $b_{n}= \dfrac{a_n-2}{a_n}$とするとき、 $b_{n+ 1}$ を$b_n$を用いて表せ。
(3) $b_n$を$n$を用いて表せ。
この動画を見る 

【数B】【数列】条件a1=4, an+1=4an+8/an+6によって定められる数列{an}に対して、bn=an-2/an+4とおくと、数列{bn}は等比数列である。数列{an}の一般項を求めよ。

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a_{1}=4$
$a_{n+1} = \dfrac{4a_n + 8}{a_n + 6}$
によって定められる数列$a_n$に対して、
$b_n = \dfrac{a_n - 2}{a_n + 4}$
とおくと、数列 $b_n$は等比数列である。
数列$a_n$の一般項を求めよ。
この動画を見る 

福田の数学〜青山学院大学2024理工学部第4問〜3項間漸化式の解法

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
初項が $1$、第10項が $3$ である数列 $\{a_n\}$ が
\begin{equation*}
a_{n+2}-3a_{n+1}+2a_n+1=0 \quad (n=1,2,3,\ldots)
\end{equation*}
を満たしている。$b_n=a_{n+1}-a_n \ (n=1,2,3,\ldots)$ とおくとき、以下の問いに答えよ。
$(1)$ $b_{n+1}$ を $b_n$ を用いて表せ。
$(2)$ $b_n$ を $n$ と $b_1$ を用いて表せ。
$(3)$ $b_1$ を求めよ。
$(4)$ 数列 $\{a_n\}$ の一般項を求めよ。
この動画を見る 

大学入試問題#595「山口大学に初挑戦!」 山口大学(2014) #数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a_n=\tan\displaystyle \frac{\pi}{2^{n+1}}$のとき
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{a_{n+1}}{a_n}$を求めよ

出典:2014年山口大学 入試問題
この動画を見る 

二項定理を使ってあることに気付ける?【2017年一橋大学】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#式の計算(整式・展開・因数分解)#恒等式・等式・不等式の証明#数列#漸化式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ P(0)=1,P(x+1)-P(x)=2x$を満たす整式$P(x)$を求めよ。

2017一橋大過去問
この動画を見る 
PAGE TOP