単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
※図は動画内
平面上でx座標もy座標も整数である点を格子点という。 m とnを正の整数とするとき、xy平面上に点 $P_{ij}$(i = 1 , 2 ,・・・,j=1,2,・・・,n)を格子点(i,j)に置く。次にこれらの点を囲むようにA ( 0.5 , 0.5 ), B ( m + 0.5 , 0.5 ), C ( m + 0.5 ,n+ 0.5 ),D ( 0.5 ,n+ 0.5 )を頂点とする長方形を描く。
長方形ABCD の内側に以下のように「軌道」を作図する。
l. $P_{ij}$の外周の点(i= 1 またはi= m またはj= 1 またはj=nの点)を選び、その点から 0.5 の距離だけはなれた長方形 ABCD 上の点を軌道の起点とし、基点の置かれた辺と 45°の角度をなす直線の軌道を長方形 ABCD 内に描く。
2. 軌道が長方形 ABCD の別の辺にぶつかった場合、軌道を直角に曲げる。この操作を繰り返すと、軌道はいずれ起点に戻るので、そこで描くのを停止すると、一筆書きで閉じた 1 つの軌道が得られる。
3.ステップ 1 と 2 で描いた軌道の内側にすべての点 $P_{i,j}$が含まれているようなら、作図を終了する。軌道の外にある点が残っている場合、まだ軌道の外にある外周の点 $P_{i,j}$ を選び、ステップ 1 以降の操作を繰り返す。すべての点 $P_{i,j}$を軌道内に納めるために必要な最小の軌道の数を T(m,n)と書くことにする。右の図は T(4,2)= 2 であることを示している。(異なる軌道を破線と点線で描き分けた)
(l) T ( 4 , 4 )は$\fbox{ア}$である。
( 2 ) T ( 15 , 5 )は$\fbox{イ}$である。
( 3 ) T ( 2023 , 1015 )は$\fbox{ウ}$である。
( 4 )下の 12 個の T ( m ,n)の値の最大値は$\fbox{エ}$であり、最大値を取るものが$\fbox{オ}$個ある。T(2,1), T(3, 2 ), T(8, 5 ), T(6, 3 ), T(9, 6 ), T ( 24 , 15 ), T ( 63 , 39 ), T ( 165 ,102 ),T ( 699 , 267 ), T ( 2961 ,1131), T ( 7752 , 4791) , T ( 32838 , 12543 )
2023慶應義塾大学総合政策学部過去問
この動画を見る